scholarly journals Factors that influence the translocation of the N-carboxybiotin moiety between the two sub-sites of pyruvate carboxylase

1981 ◽  
Vol 199 (3) ◽  
pp. 603-609 ◽  
Author(s):  
G J Goodall ◽  
G S Baldwin ◽  
J C Wallace ◽  
D B Keech

The active site of pyruvate carboxylase, like those of all biotin-dependent carboxylases, is believed to consist of two spatially distinct sub-sites with biotin acting as a mobile carboxy-group carrier oscillating between the two sub-sites. Some of the factors that influence the location and rate of movement of the N-carboxybiotin were studied. The rate of carboxylation of the alternative substrate, 2-oxobutyrate, was measured at 0 degrees C in an assay system where the isolated enzyme--[14C]carboxybiotin was the carboxy-group donor. The results are consistent with the hypothesis that the location of the carboxybiotin in the active site is determined by the presence of Mg2+, acetyl-CoA and the oxo acid substrate. The presence of Mg2+ favours the holding of the complex at the first sub-site, whereas alpha-oxo acids induce the complex to move to the second sub-site. At low concentrations pyruvate induces this movement but does not efficiently act as a carboxy-group acceptor; hydroxypyruvate, glyoxylate and oxamate, though not carboxylated, still induce the movement. The allosteric activator acetyl-CoA exerts only a slight stimulation on the rate of translocation to the second sub-site, and this stimulation arises from an increase in the dissociation constant for Mg2+.

1992 ◽  
Vol 287 (3) ◽  
pp. 1011-1017 ◽  
Author(s):  
P V Attwood ◽  
B D L A Graneri

Preparations of pyruvate carboxylase catalyse the cleavage of MgATP in the absence of pyruvate and acetyl-CoA. The rate of this cleavage is higher in the presence of HCO3- than in its absence. Incubation of the enzyme preparations with an excess of the pyruvate carboxylase inhibitor, avidin, completely abolishes the pyruvate carboxylating activity of the enzyme preparations but only abolishes the HCO3(-)-dependent MgATP cleaving activity, with no effect on the HCO3(-)-independent ATPase activity. The HCO3(-)-dependent MgATP cleavage is also sensitive to inhibition by a pyruvate carboxylase inhibitor, oxamate, and the dependence of the reaction on the free Mg2+ concentration is similar to that of the pyruvate-carboxylation reaction, whereas the HCO3(-)-independent MgATP cleavage is not dependent on the concentration of free Mg2+ in the range tested. This indicates that MgATP cleavage by pyruvate carboxylase is entirely dependent on the presence of HCO3- and that there may be a low level of ATPase contamination in the enzyme preparations. In addition, inhibition of the HCO3(-)-dependent MgATP cleavage by both avidin and oxamate indicate that although biotin does not directly participate in the reaction, its presence is required in that part of the active site of the enzyme. The rate of HCO3(-)-dependent MgATP cleavage is about 0.07% of that of the full pyruvate carboxylation reaction under similar conditions with saturating substrates. The reaction mechanism is sequential with respect to MgATP and HCO3- addition and Mg2+ adds at equilibrium before MgATP. Acetyl-CoA stimulates the HCO3(-)-dependent MgATP cleavage at low MgATP concentrations, with the stimulation being greater at low Mg2+ concentrations. At high levels of MgATP in the presence of acetyl-CoA, substrate inhibition is evident and is more pronounced at increasing concentrations of Mg2+. This inhibition appears to be, at least in part, caused by inhibition of decarboxylation of the enzyme-carboxybiotin complex by the binding to this complex of Mg2+ and MgATP, which probably act to reduce the rate of movement of carboxybiotin from the site of the MgATP cleavage reaction to that of the pyruvate carboxylation reaction where it is unstable and decarboxylates.


2012 ◽  
Vol 40 (3) ◽  
pp. 567-572 ◽  
Author(s):  
Abdussalam Adina-Zada ◽  
Tonya N. Zeczycki ◽  
Martin St. Maurice ◽  
Sarawut Jitrapakdee ◽  
W. Wallace Cleland ◽  
...  

The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.


1991 ◽  
Vol 273 (2) ◽  
pp. 443-448 ◽  
Author(s):  
P V Attwood ◽  
B D L A Graneri

In a reaction that is analogous to the phosphorylation of ADP from carboxyphosphate, pyruvate carboxylase catalyses the formation of ATP from carbamoyl phosphate and ADP at a rate that is about 0.3% of the pyruvate-carboxylation reaction and about 3% of the full reverse reaction. Acetyl-CoA stimulates the phosphorylation of ADP from carbamoyl phosphate but is not an essential requirement of the reaction. Mg2+ also stimulates the reaction, and in the range of Mg2+ concentrations considered the effect of V is much larger in the absence of acetyl-CoA than in its presence. Acetyl-CoA and Mg2+ may be acting in a co-operative way to stimulate the phosphorylation of ADP in a similar way to their effects on the pyruvate-carboxylation reaction. The phosphorylation of ADP by carbamoyl phosphate is also stimulated by the presence of biotin in the part of the active site where this reaction occurs, but again it is not absolutely required for the reaction to proceed. The pH profiles of the phosphorylation of ADP by carbamoyl phosphate indicate that there are at least two ionizable residues involved in the reaction, one of which probably has a role in the release of carbamate from the active site.


2008 ◽  
Vol 413 (3) ◽  
pp. 369-387 ◽  
Author(s):  
Sarawut Jitrapakdee ◽  
Martin St Maurice ◽  
Ivan Rayment ◽  
W. Wallace Cleland ◽  
John C. Wallace ◽  
...  

PC (pyruvate carboxylase) is a biotin-containing enzyme that catalyses the HCO3−- and MgATP-dependent carboxylation of pyruvate to form oxaloacetate. This is a very important anaplerotic reaction, replenishing oxaloacetate withdrawn from the tricarboxylic acid cycle for various pivotal biochemical pathways. PC is therefore considered as an enzyme that is crucial for intermediary metabolism, controlling fuel partitioning toward gluconeogenesis or lipogenesis and in insulin secretion. The enzyme was discovered in 1959 and over the last decade there has been much progress in understanding its structure and function. PC from most organisms is a tetrameric protein that is allosterically regulated by acetyl-CoA and aspartate. High-resolution crystal structures of the holoenzyme with various ligands bound have recently been determined, and have revealed details of the binding sites and the relative positions of the biotin carboxylase, carboxyltransferase and biotin carboxyl carrier domains, and also a unique allosteric effector domain. In the presence of the allosteric effector, acetyl-CoA, the biotin moiety transfers the carboxy group between the biotin carboxylase domain active site on one polypeptide chain and the carboxyltransferase active site on the adjacent antiparallel polypeptide chain. In addition, the bona fide role of PC in the non-gluconeogenic tissues has been studied using a combination of classical biochemistry and genetic approaches. The first cloning of the promoter of the PC gene in mammals and subsequent transcriptional studies reveal some key cognate transcription factors regulating tissue-specific expression. The present review summarizes these advances and also offers some prospects in terms of future directions for the study of this important enzyme.


2021 ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group ( N ε ) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N -acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c , cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase ( Cj Acs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter Cj LatA), and a NAD + -dependent (class III) sirtuin deacylase ( Cj CobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of Cj Acs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase ( Cj Acs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of Cj Acs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.


1956 ◽  
Vol 39 (5) ◽  
pp. 687-704 ◽  
Author(s):  
Ernest C. Foulkes

1. The distribution of azide added to suspensions of bakers' yeast was studied under various conditions. The recovery of azide was estimated in the volume of water into which low concentrations of electrolytes can readily diffuse (anion space). Considerable azide disappeared from this anion space. 2. The incomplete recovery of azide in the anion space is due to its uptake by the cells. This uptake occurs against a concentration gradient at 0°C., and is attributed to binding of azide by cell constituents. 3. Confirmatory evidence is presented that one such constituent is the K carrier in the cell membrane. The azide inhibition of K transport is not mediated by inhibition of cytochrome oxidase in the mitochondria. 4. From the amount of combined azide and the experimentally determined dissociation constant of the K carrier-inhibitor complex, the maximum value for the concentration of this carrier is calculated as 0.1 µM/gm. yeast. 5. The addition of glucose and PO4 causes a secondary K uptake which is not azide-sensitive and is clearly distinct from the primary, azide-sensitive mechanism. 6. The existence of a separate carrier responsible for Na extrusion is reconsidered. It is concluded that present evidence does not necessitate the assumption that such a carrier is active in yeast.


Sign in / Sign up

Export Citation Format

Share Document