site specificity
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 79)

H-INDEX

58
(FIVE YEARS 6)

Author(s):  
Tatja Scholte

In the previous chapter, I argued for a broader notion of site specificity than the connectivity between the artwork and the physical location of display. The institutional and sociocultural contexts of production and reception were also identified as parameters for a site-specific installation, leading to my suggestion to conceive site specificity as a network of site-specific functions. In the current chapter, I develop a conceptual model for the analysis of site-specific installation artworks to understand how this network is formed and transforms over time. The model consists of two parts, one focusing on a categorization of the various functions of site specificity; the other proposing a methodology to compare successive iterations of the artwork and to analyse which “factors of influence” cause changes at a particular biographical stage.


Author(s):  
Tatja Scholte

The readers of this book have taken note of the history of site-specific installation art and were offered an analytical model for examining the perpetuation of the artworks in a museum context. As the term suggests, site-specific installations are physically tied to the surrounding space and would, strictly speaking, have no afterlives after their initial manifestation. However, as demonstrated with many examples, site-specific installations can have extended lives and are frequently relocated to different contexts and times. Hence, rather than defining site specificity as a “fixed” characteristic, this study took a broader perspective by looking into the biographies of the artworks in relation to the exhibition site, ongoing institutional engagement, the locations of production, and the visitors’ interaction in the here and now.


2021 ◽  
Author(s):  
Anthony R. McLean ◽  
Julian Torres-Morales ◽  
Gary G. Borisy ◽  
Jessica L. Mark Welch

Patterns of microbial distribution are determined by as-yet poorly understood rules governing where microbes can grow and thrive. Therefore, a detailed understanding of where bacteria localize is necessary to advance microbial ecology and microbiome-based therapeutics. The site-specialist hypothesis predicts that most microbes in the human oral cavity have a primary habitat within the mouth where they are most abundant. We asked whether this hypothesis accurately describes the distribution of the members of the genus Streptococcus, a clinically relevant taxon that dominates most oral sites. Prior analysis of 16S rRNA gene sequencing data indicated that some oral Streptococcus clades are site-specialists while others may be generalists. However, within complex microbial populations composed of numerous closely-related species and strains, such as the oral streptococci, genome-scale analysis is necessary to provide the resolution to discriminate closely related taxa with distinct functional roles. Here we assess whether individual species within this genus are generalists using publicly available genomic sequence data that provides species-level resolution. We chose a set of high-quality representative genomes for Streptococcus species from the human oral microbiome. Onto these genomes, we mapped short-read metagenomic sequences from supragingival plaque, tongue dorsum, and other sites in the oral cavity. We found that every reliably detectable Streptococcus species in the human oral cavity was a site-specialist and that even closely related species such as S. mitis, S. oralis, and S. infantis specialized in different sites. These findings indicate that closely related bacteria can have distinct habitat distributions in the absence of dispersal limitation and under similar environmental conditions and immune regimes. These three species also share substantially the same species-specific core genes indicating that neither taxonomy nor gene content are clear predictors of site-specialization. Site-specificity may instead be influenced by subtle characteristics such as nucleotide-level divergences within conserved genes.


2021 ◽  
Author(s):  
◽  
Mark Jonathan Calcott

<p>Non-ribosomal peptide synthetases (NRPSs) synthesise small highly diverse peptides with a wide range of activities, such as antibiotics, anticancer drugs, and immunosuppressants. NRPS synthesis often resembles an assembly line, in which each module acts in a linear order to add one monomer to the growing peptide chain. In the basic mechanism of synthesis, an adenylation (A) domain within each module activates a specific monomer. Once activated, the monomer is attached to an immediately downstream thiolation (T) domain via a prosthetic phosphopantheine group, which acts as a flexible arm to pass the substrate between catalytic domains. A condensation (C) domain, upstream to the A-T domains, catalyses peptide bond formation between an acceptor substrate attached to the T domain and a donor substrate attached to the T domain of the upstream module. The peptide remains attached to the T domain of the acceptor substrate, and then acts as the donor substrate for the next C domain. When peptide synthesis reaches the final module, the peptide is released by a thioesterase (TE) domain.  The linear mode of synthesis and discrete functional domains within each module gives the potential to generate new products by substituting domains or entire modules with ones that activate alternative substrates. Attempts to create new products using domain and module substitution often result in a loss of activity. The work in this thesis focuses on identifying barriers to effective domain substitution. The NRPS enzyme pvdD, which adds the final residue to the eleven residue non-ribosomal peptide pyoverdine, was developed as a model for domain substitution. The primary benefit for using this model is that pyoverdine creates easily detectible fluorescent products.  The first set of experiments focused on testing the limitations of A domain and C-A domain substitutions to alter pyoverdine. Nine A domain and nine C-A domain substitution pvdD variants were constructed and used to complement a P. aeruginosa PAO1 pvdD deletion strain. The A domain substitutions that specified the wild type substrate were highly functional, whereas A domains that specified other substrates resulted in low levels of wild type pyoverdine production. This suggests the acceptor site substrate specificity of the C domain limited the success of A domain substitutions, rather than disruption of the C/A domain junction. In contrast, although C-A domain substitutions in pvdD in some cases synthesised novel pyoverdines, the majority lost function for unknown reasons. The high success rate A domain substitutions (when not limited by the acceptor site specificity of the C domain) suggested the addition of new C domains was a likely cause for loss of function.  The second set of experiments investigated whether disrupting the protein interface between C domains and their upstream T domains may cause a loss in function of C-A domain substitutions. However, domain substitutions of T domains were found to have a high rate of success. Therefore, the results thus far confirmed that disrupting interactions of the C domain with A domains or T domains does not have a large affect on enzyme activity.  An alternative explanation for the loss in function with C-A domain substitutions is that C domains translocated to a new enzyme are unable to process the new incoming donor peptide chain because of substrate specificity or steric constraints. To develop methods to circumvent limitations caused by the C domain, the final part of this thesis examined acceptor substrate specificity of C domains. Acceptor site substrate specificity was chosen over donor site specificity as it acts on only an amino acid rather than peptide chain. The substrate specificity was narrowed down to a small subsection of the C domain. This was an initial study of C domain substrate specificity, which may guide future development of relaxed specificity C domains.</p>


2021 ◽  
Author(s):  
◽  
Mark Jonathan Calcott

<p>Non-ribosomal peptide synthetases (NRPSs) synthesise small highly diverse peptides with a wide range of activities, such as antibiotics, anticancer drugs, and immunosuppressants. NRPS synthesis often resembles an assembly line, in which each module acts in a linear order to add one monomer to the growing peptide chain. In the basic mechanism of synthesis, an adenylation (A) domain within each module activates a specific monomer. Once activated, the monomer is attached to an immediately downstream thiolation (T) domain via a prosthetic phosphopantheine group, which acts as a flexible arm to pass the substrate between catalytic domains. A condensation (C) domain, upstream to the A-T domains, catalyses peptide bond formation between an acceptor substrate attached to the T domain and a donor substrate attached to the T domain of the upstream module. The peptide remains attached to the T domain of the acceptor substrate, and then acts as the donor substrate for the next C domain. When peptide synthesis reaches the final module, the peptide is released by a thioesterase (TE) domain.  The linear mode of synthesis and discrete functional domains within each module gives the potential to generate new products by substituting domains or entire modules with ones that activate alternative substrates. Attempts to create new products using domain and module substitution often result in a loss of activity. The work in this thesis focuses on identifying barriers to effective domain substitution. The NRPS enzyme pvdD, which adds the final residue to the eleven residue non-ribosomal peptide pyoverdine, was developed as a model for domain substitution. The primary benefit for using this model is that pyoverdine creates easily detectible fluorescent products.  The first set of experiments focused on testing the limitations of A domain and C-A domain substitutions to alter pyoverdine. Nine A domain and nine C-A domain substitution pvdD variants were constructed and used to complement a P. aeruginosa PAO1 pvdD deletion strain. The A domain substitutions that specified the wild type substrate were highly functional, whereas A domains that specified other substrates resulted in low levels of wild type pyoverdine production. This suggests the acceptor site substrate specificity of the C domain limited the success of A domain substitutions, rather than disruption of the C/A domain junction. In contrast, although C-A domain substitutions in pvdD in some cases synthesised novel pyoverdines, the majority lost function for unknown reasons. The high success rate A domain substitutions (when not limited by the acceptor site specificity of the C domain) suggested the addition of new C domains was a likely cause for loss of function.  The second set of experiments investigated whether disrupting the protein interface between C domains and their upstream T domains may cause a loss in function of C-A domain substitutions. However, domain substitutions of T domains were found to have a high rate of success. Therefore, the results thus far confirmed that disrupting interactions of the C domain with A domains or T domains does not have a large affect on enzyme activity.  An alternative explanation for the loss in function with C-A domain substitutions is that C domains translocated to a new enzyme are unable to process the new incoming donor peptide chain because of substrate specificity or steric constraints. To develop methods to circumvent limitations caused by the C domain, the final part of this thesis examined acceptor substrate specificity of C domains. Acceptor site substrate specificity was chosen over donor site specificity as it acts on only an amino acid rather than peptide chain. The substrate specificity was narrowed down to a small subsection of the C domain. This was an initial study of C domain substrate specificity, which may guide future development of relaxed specificity C domains.</p>


Author(s):  
Sean R. Wallace ◽  
Leila Y. Chihab ◽  
Miles Yamasaki ◽  
Braden T. Yoshinaga ◽  
Yazmin M. Torres ◽  
...  

Author(s):  
Herman Y. L. Wihastyoko ◽  
Setyawati Soeharto ◽  
Edi Widjajanto ◽  
Kusworini Kusworini ◽  
Bambang Pardjianto

Aims: This study aims to identify the potential of papain as a candidate for the treatment modality for abnormal scars via in silico studies. Methods: We determined the potential mechanism of the process of collagen degradation by papain by investigating its cleavage site-specificity and identifying human papain-like enzymes that have comparable biological activity in degrading collagen in the extracellular matrix using Merops, Bioedit, String DB and Cytoscape software. Results: Papain targets QQ_D (Glutamine-Glutamine Aspartic acid) motif for degradation while collagen only has QQ (Glutamine-Glutamine) motif. Additionally, the homology result showed that Cathepsin B has a closer relationship with papain compared with another candidate, Cathepsin K. Conclusion: Papain is a potential therapeutical modality candidate in degrading collagen in abnormal scars with an indirect mechanism as indicated by its cleavage site-specificity and its relationship with Cathepsin B, which degrades collagen via ubiquitin (UBC) proteasome.


2021 ◽  
pp. 105215
Author(s):  
B. S. Gnanesh Kumar ◽  
P. Lijina ◽  
S.H. Akshata
Keyword(s):  

2021 ◽  
Vol 35 (9) ◽  
Author(s):  
Liyou An ◽  
Yanhong Liu ◽  
Mingyang Li ◽  
Zhihui Liu ◽  
Zhisong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document