scholarly journals CATION TRANSPORT IN YEAST

1956 ◽  
Vol 39 (5) ◽  
pp. 687-704 ◽  
Author(s):  
Ernest C. Foulkes

1. The distribution of azide added to suspensions of bakers' yeast was studied under various conditions. The recovery of azide was estimated in the volume of water into which low concentrations of electrolytes can readily diffuse (anion space). Considerable azide disappeared from this anion space. 2. The incomplete recovery of azide in the anion space is due to its uptake by the cells. This uptake occurs against a concentration gradient at 0°C., and is attributed to binding of azide by cell constituents. 3. Confirmatory evidence is presented that one such constituent is the K carrier in the cell membrane. The azide inhibition of K transport is not mediated by inhibition of cytochrome oxidase in the mitochondria. 4. From the amount of combined azide and the experimentally determined dissociation constant of the K carrier-inhibitor complex, the maximum value for the concentration of this carrier is calculated as 0.1 µM/gm. yeast. 5. The addition of glucose and PO4 causes a secondary K uptake which is not azide-sensitive and is clearly distinct from the primary, azide-sensitive mechanism. 6. The existence of a separate carrier responsible for Na extrusion is reconsidered. It is concluded that present evidence does not necessitate the assumption that such a carrier is active in yeast.

1978 ◽  
Vol 72 (3) ◽  
pp. 283-295 ◽  
Author(s):  
D B Rhoads ◽  
W Epstein

Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high.


2014 ◽  
Vol 171 (9) ◽  
pp. 748-769 ◽  
Author(s):  
Anne-Aliénor Véry ◽  
Manuel Nieves-Cordones ◽  
Meriem Daly ◽  
Imran Khan ◽  
Cécile Fizames ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Inas Al-Younis ◽  
Aloysius Wong ◽  
Fouad Lemtiri-Chlieh ◽  
Sandra Schmöckel ◽  
Mark Tester ◽  
...  

1987 ◽  
Vol 253 (1) ◽  
pp. R1-R7 ◽  
Author(s):  
P. L. Else ◽  
A. J. Hulbert

O2 consumption was measured at 37 degrees C in tissue slices of liver, kidney, and brain from Amphibolurus vitticeps and Rattus norvegicus (a reptile and mammal with same weight and body temperature) both in the presence and absence of ouabain. O2 consumption of the mammalian tissues was two to four times that of the reptilian tissues and the mammalian tissues used three to six times the energy for Na+-K+ transport than the reptilian tissues. Passive permeability to 42K+ was measured at 37 degrees C in liver and kidney slices, and passive permeability to 22Na+ was measured at 37 degrees C in isolated and cultured liver cells from each species. The mammalian cell membrane was severalfold "leakier" to both these ions than was the reptilian cell membrane, and thus the membrane pumps must use more energy to maintain the transmembrane ion gradients. It is postulated that this is a general difference between the cells of ectotherms and endotherms and thus partly explains the much higher levels of metabolism found in endothermic mammals.


1985 ◽  
Vol 248 (6) ◽  
pp. F858-F868 ◽  
Author(s):  
S. C. Sansom ◽  
R. G. O'Neil

The effects of mineralocorticoid (DOCA) treatment of rabbits on the Na+ and K+ transport properties of the cortical collecting duct apical cell membrane were assessed using microelectrode techniques. Applying standard cable techniques and equivalent circuit analysis to the isolated perfused tubule, the apical cell membrane K+ and Na+ currents and conductances could be estimated from the selective effects of the K+ channel blocker Ba2+ and the Na+ channel blocker amiloride on the apical membrane; amiloride treatment was observed also to decrease the tight junction conductance by an average of 10%. After 1 day of DOCA treatment, the Na+ conductance and current (Na+ influx) of the apical cell membrane doubled and remained elevated with prolonged treatment for up to 2 wk. The apical cell membrane K+ conductance was not influenced after 1 day, although the K+ current (K+ secretion) increased significantly due to an increased driving force for K+ exit. After 4 days or more of DOCA treatment the K+ conductance doubled, resulting in a further modest stimulation in K+ secretion. After 2 wk of DOCA treatment the tight junction conductance decreased by near 30%, resulting in an additional hyperpolarization of the transepithelial voltage, thereby favoring K+ secretion. It is concluded that the acute effect (within 1 day) of mineralocorticoids on Na+ and K+ transport is an increase in the apical membrane Na+ conductance followed by delayed chronic alterations in the apical membrane K+ conductance and tight junction conductance, thereby resulting in a sustained increased capacity of the tubule to reabsorb Na+ and secrete K+.


1995 ◽  
Vol 305 (1) ◽  
pp. 133-137 ◽  
Author(s):  
M A Phelouzat ◽  
M Basselin ◽  
F Lawrence ◽  
M Robert-Gero

The involvement of a carrier for sinefungin (SF) uptake in Leishmania donovani promastigotes is indicated by saturation kinetics, competition studies and SF accumulation against a 270-fold concentration gradient across the cell membrane. Whether SF uptake occurs via nucleoside- or AdoMet-carrier systems was investigated by competition experiments and comparison of the uptake of various molecules in wild-type and SF-resistant cells. Results show that SF did not inhibit purine or pyrimidine uptake whereas it competitively inhibited AdoMet uptake. Furthermore, the uptake of nucleosides in SF-resistant cells is similar to that in wild-type cells, whereas uptake of SF and AdoMet is lower.


1985 ◽  
Vol 69 (3) ◽  
pp. 309-319 ◽  
Author(s):  
G. W. Stewart ◽  
J. C. Ellory

1. Radioisotopic cation transport studies are described in a family whose erythrocytes had previously been found to show an abnormal net efflux of potassium when cooled to room temperature. This net efflux effect, which was inherited as an autosomal dominant trait, was associated with a few target cells on the blood film and a mild compensated haemolytic state. 2. Measurements of intracellular electrolyte concentrations, cell water and of Na+ and K+ transport rates across the membrane at 37°C were consistent with a diagnosis of mild hereditary xerocytosis. 3. Studies of cation transport in the temperature range 20–37°C revealed that the fluxes attributable to the Na+-K+ pump showed a temperature dependence comparable with that in normal cells, but that the ouabain plus loop-diuretic insensitive fluxes of K+, which probably represent the ‘passive diffusional leak’ to K+, were less sensitive to temperature than normal over the range 20–37°C. These findings were held to account for the net efflux effect previously reported.


1990 ◽  
Vol 258 (5) ◽  
pp. R1217-R1223 ◽  
Author(s):  
K. G. Dickman ◽  
L. Goldstein

The role of K transport during cell volume regulation in response to extracellular osmolality, protein kinase C activation, and cellular Ca was examined in skate (Raja erinacea) red blood cells (RBC). Reduction of medium osmolality from 960 to 660 mosmol/kgH2O had no effect on K uptake or efflux despite a 25% increase in cell volume. Further reduction to 460 mosmol/kgH2O caused K uptake to double and K efflux to triple resulting in net K loss. Net K efflux in 460 mosmol/kgH2O medium was correlated with the presence of a regulatory volume decrease, which was sensitive to the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and insensitive to chloride replacement. K-K exchange was absent in both isotonic and hypotonic media. Treatment with the Ca ionophore A23187 in the presence of Ca had no effect on either cell volume or K efflux in isotonic medium, indicating the absence of Ca-activated K transport. In contrast, phorbol ester treatment caused cell volume, Na content, and proton and K efflux to increase. Consistent with activation of Na-H exchange, phorbol ester effects were inhibited by dimethylamiloride. This study constitutes the first demonstration of volume-sensitive K transport in RBC from the most primitive vertebrate studied to date.


Sign in / Sign up

Export Citation Format

Share Document