scholarly journals The structure of procaspase 6 is similar to that of active mature caspase 6

2002 ◽  
Vol 364 (3) ◽  
pp. 629-634 ◽  
Author(s):  
Byoung Heon KANG ◽  
Eunsil KO ◽  
Oh-Keun KWON ◽  
Kwan Yong CHOI

To investigate the structural characteristics and activation mechanism of the precursor caspase, genes encoding the inactive pro-form and the active mature form of caspase 6 were expressed in Escherichia coli and the proteins of both forms were purified to homogeneity. The structure of each protein was characterized by chemical cross-linking, size-exclusion chromatography, CD and fluorescence spectroscopies. The pro-form caspase 6 exhibits a dimeric structure and its overall secondary structure was found to be similar to that of the mature caspase 6. Upon the maturation of procaspase 6, the maximum fluorescence wavelength λmax was red-shifted from 330 to 337nm and the fluorescence intensity of λmax was increased. This fluorescence spectral change indicates that the environment of a tryptophan residue in the substrate-binding site can be changed to a more polar one when the procaspase 6 is processed. Taken together, our results strongly demonstrate that precursor caspase 6 exists as a dimer and its overall structure is similar to that of the active caspase 6. Our results also suggest that the local conformational change at the substrate-binding site, with no drastic change in the overall structure, seems to enable precursor caspase 6 to become the active mature enzyme.

2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


FEBS Letters ◽  
2006 ◽  
Vol 580 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Misugi Uraji ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

Sign in / Sign up

Export Citation Format

Share Document