scholarly journals Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fucα1-2 glycosyltransferase

2002 ◽  
Vol 367 (3) ◽  
pp. 609-616 ◽  
Author(s):  
Kristina A. THOMSSON ◽  
Marina HINOJOSA-KURTZBERG ◽  
Karin A. AXELSSON ◽  
Steven E. DOMINO ◽  
John B. LOWE ◽  
...  

In gene-targeted mouse models for cystic fibrosis (CF), the disease is mainly manifested by mucus obstruction in the intestine. To explore the mucus composition, mucins insoluble and soluble in 6M guanidinium chloride were purified by three rounds of isopycnic ultracentrifugation from the small and large intestines of CF mice (Cftrm1UNC/Cftrm1UNC) and compared with wild-type mice. The amino acid composition was typical of that for mucins and showed increased amounts of the insoluble (2.5-fold increase) and soluble (7-fold increase) mucins in the small intestine of the CF mice compared with wild-type mice. Mucins from the large intestine of both wild-type and CF mice showed a high but constant level of fucosylation. In contrast, the insoluble and soluble mucins of the small intestine in CF mice revealed a large increase in fucose, whereas those of wild-type mice contained only small amounts of fucose. This increased fucosylation was analysed by releasing the O-linked oligosaccharides followed by GC-MS. NMR spectroscopy revealed that the increased fucosylation was due to an increased expression of blood group H epitopes (Fucα1-2Gal-). Northern-blot analysis, using a probe for the murine Fucα1-2 fucosyltransferase (Fut2), showed an up-regulation of this mRNA in the small intestine of the CF mice, suggesting that this enzyme is responsible for the observed increase in blood group H-type glycosylation. The reason for this up-regulation could be a direct or indirect effect of a non-functional CF transmembrane conductance regulator (CFTR) caused by the absence of CFTR channel.

2002 ◽  
Vol 364 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Josie L. FALANY ◽  
Heather GREER ◽  
Timea KOVACS ◽  
Eric J. SORSCHER ◽  
Charles N. FALANY

The severity of intestinal disease in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) (-/−) mice has been reported to co-segregate with gene loci which contain the genes for hydroxysteroid sulphotransferase (SULT). Because of the potential involvement of steroid hormones in CF, we investigated levels of steroid SULT activity in the livers of CFTR mice to determine whether the levels of SULT activity correlate with the occurrence or severity of CF. To elucidate the possible role of SULT activity in ameliorating the deleterious effects of CF in CFTR (-/−) mice, we determined the levels of phenol SULT (PST), hydroxysteroid SULT [dehydroepiandrosterone (DHEA)-ST] and oestrogen SULT (EST) activity in control CFTR (+/+), heterozygous CFTR (+/−) and homozygous CFTR (-/−) mice, which survive to adulthood. The level of PST activity was not significantly different between any of the groups of mice, regardless of sex or genotype. Although DHEA-ST activity was significantly higher in female mice than in male mice, there was no difference in DHEA-ST activity that could be correlated with genotype. In contrast with PST and DHEA-ST activities, we found that some male and all female adult CFTR (-/−) mice had elevated, dramatically different levels of EST from both CFTR (+/+) and CFTR (+/−) mice. Results from these SULT activity experiments were confirmed by Northern-blot analysis of mouse-liver RNA. Subsequent studies with preweanling mice revealed no differences in the levels of EST that could be correlated with genotype. Thus this study indicates that EST is elevated significantly in CFTR (-/−) mice which survive to adulthood and provides important biochemical information that EST levels may be protective in CF.


2004 ◽  
Vol 167 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Xiaodong Wang ◽  
Jeanne Matteson ◽  
Yu An ◽  
Bryan Moyer ◽  
Jin-San Yoo ◽  
...  

Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) ΔF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not used to deliver CFTR to ER-associated degradation. We find that exit of wild-type CFTR from the ER is blocked by mutation of a consensus di-acidic ER exit motif present in the first nucleotide binding domain. Mutation of the code disrupts interaction with the COPII coat selection complex Sec23/Sec24. We propose that the di-acidic exit code plays a key role in linking CFTR to the COPII coat machinery and is the primary defect responsible for CF in ΔF508-expressing patients.


1997 ◽  
Vol 273 (5) ◽  
pp. L1065-L1072 ◽  
Author(s):  
Thomas J. Kelley ◽  
Calvin U. Cotton ◽  
Mitchell L. Drumm

Inhibitors of guanosine 3′,5′-cyclic monophosphate (cGMP)-inhibited phosphodiesterases stimulate Cl− transport across the nasal epithelia of cystic fibrosis mice carrying the ΔF508 mutation [cystic fibrosis transmembrane conductance regulator (CFTR) (ΔF/ΔF)], suggesting a role for cGMP in regulation of epithelial ion transport. Here we show that activation of membrane-bound guanylate cyclases by C-type natriuretic peptide (CNP) stimulates hyperpolarization of nasal epithelium in both wild-type and ΔF508 CFTR mice in vivo but not in nasal epithelium of mice lacking CFTR [CFTR(−/−)]. With the use of a nasal transepithelial potential difference (TEPD) assay, CNP was found to hyperpolarize lumen negative TEPD by 6.1 ± 0.6 mV in mice carrying wild-type CFTR. This value is consistent with that obtained with 8-bromoguanosine 3′,5′-cyclic monophosphate (6.2 ± 0.9 mV). A combination of the adenylate cyclase agonist forskolin and CNP demonstrated a synergistic ability to induce Cl− secretion across the nasal epithelium of CFTR(ΔF/ΔF) mice. No effect on TEPD was seen with this combination when used on CFTR(−/−) mice, implying that the CNP-induced change in TEPD in CFTR(ΔF/ΔF) mice is CFTR dependent.


2020 ◽  
Vol 319 (6) ◽  
pp. L997-L1009
Author(s):  
Mayuree Rodrat ◽  
Walailak Jantarajit ◽  
Demi R. S. Ng ◽  
Bartholomew S. J. Harvey ◽  
Jia Liu ◽  
...  

The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1–300 μM) inhibited CFTR channel activity, whereas the control RuCl3 (100 μM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability ( Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl− channels inhibited by CO potentially expands the drug’s clinical utility.


2005 ◽  
Vol 73 (10) ◽  
pp. 6822-6830 ◽  
Author(s):  
Nina Reiniger ◽  
Jeffrey K. Ichikawa ◽  
Gerald B. Pier

ABSTRACT Chronic lung infection by Pseudomonas aeruginosa causes significant morbidity in cystic fibrosis patients initiated by the failure of innate immune responses. We used microarray analysis and real-time PCR to detect transcriptional changes associated with cytokine production in isogenic bronchial epithelial cell lines with either wild-type (WT) or mutant cystic fibrosis transmembrane conductance regulator (CFTR) in response to P. aeruginosa infection. The transcription of four NF-κB-regulated cytokine genes was maximal in the presence of WT CFTR: the interleukin-8 (IL-8), IL-6, CXCL1, and intracellular adhesion molecule 1 (ICAM-1) genes. Analysis of protein expression in two cell lines paired for wild-type and mutant CFTR with three P. aeruginosa strains showed IL-6 and IL-8 expressions were consistently enhanced by the presence of WT CFTR in both cell lines with all three strains of P. aeruginosa, although some strains gave small IL-8 increases in cells with mutant CFTR. CXCL1 production showed consistent enhancement in cells with WT CFTR using all three bacterial strains in one cell line, whereas in the other cell line, CXCL1 showed a significant increase in cells with either WT or mutant CFTR. ICAM-1 was unchanged at the protein level in one of the cell lines but did show mild enhancement with WT CFTR in the other cell pair. Inhibitions of NF-κB prior to infection indicated differing degrees of dependence on NF-κB for production of the cytokines, contingent on the cell line. Cytokine effectors of innate immunity to P. aeruginosa were found to be positively influenced by the presence of WT CFTR, indicating a role in resistance to P. aeruginosa infection.


1992 ◽  
Vol 262 (6) ◽  
pp. L779-L784 ◽  
Author(s):  
M. A. Fiedler ◽  
Z. K. Nemecz ◽  
G. E. Shull

A complementary DNA (cDNA) encoding the rat cystic fibrosis transmembrane conductance regulator (CFTR) has been isolated and the tissue distribution of the rat CFTR mRNA has been determined. Northern blot analysis revealed that the highest levels of the 6.3 kilobase (kb) CFTR mRNA were expressed in the colon, with expression also noted in uterus, lung, stomach, and small intestine. A 7.5-kb mRNA was expressed in skeletal muscle, and in testes both the 7.5-kb mRNA and a 6.0-kb mRNA were expressed. Five cDNAs were isolated from a rat colon library, the longest corresponding to codons 684 through the poly A tail. Three other clones, corresponding to codons 213 through 245, 372 through 574, and 656 through 886 were also isolated. Polymerase chain reaction amplification of cDNA prepared from rat colon mRNA was utilized to clone the remainder of the cDNA. The predicted amino acid sequence of the rat CFTR is 79% identical to the human CFTR, with 73% identity noted in the R domain, and 81 and 83% identities noted in nucleotide binding folds 1 and 2, respectively. Thirty-two of the 38 potential phosphorylation sites identified in the human CFTR were also present in the rat CFTR.


2011 ◽  
Vol 301 (4) ◽  
pp. L557-L567 ◽  
Author(s):  
Ahmed Lazrak ◽  
Asta Jurkuvenaite ◽  
Lan Chen ◽  
Kim M. Keeling ◽  
James F. Collawn ◽  
...  

We sought to establish whether the cystic fibrosis transmembrane conductance regulator (CFTR) regulates the activity of amiloride-sensitive sodium channels (ENaC) in alveolar epithelial cells of wild-type, heterozygous ( Cftr +/−), knockout ( Cftr −/−), and ΔF508-expressing mice in situ. RT-PCR studies confirmed the presence of CFTR message in freshly isolated alveolar type II (ATII) cells from wild-type mice. We patched alveolar type I (ATI) and ATII cells in freshly prepared lung slices from these mice and demonstrated the presence of 4-pS ENaC channels with the following basal open probabilities (Po): wild-type=0.21 ± 0.015: Cftr +/−=0.4 ± 0.03; ΔF508=0.55 ± 0.01; and Cftr −/−=and 0.81 ± 0.016 (means ± SE; n ≥ 9). Forskolin (5 μM) or trypsin (2 μM), applied in the pipette solution, increased the Po and number of channels in ATII cells of wild-type, Cftr +/−, and ΔF508, but not in Cftr −/− mice, suggesting that the latter were maximally activated. Western blot analysis showed that lungs of all groups of mice had similar levels of α-ENaC; however, lungs of Cftr +/− and Cftr −/− mice had significantly higher levels of an α-ENaC proteolytic fragment (65 kDa) that is associated with active ENaC channels. Our results indicate that ENaC activity is inversely correlated to predicted CFTR levels and that CFTR heterozygous and homozygous mice have higher levels of proteolytically processed ENaC fragments in their lungs. This is the first demonstration of functional ENaC-CFTR interactions in alveolar epithelial cells in situ.


Sign in / Sign up

Export Citation Format

Share Document