scholarly journals The ubiquitin-associated domain of AMPK-related protein kinases allows LKB1-induced phosphorylation and activation

2006 ◽  
Vol 394 (3) ◽  
Author(s):  
Mark H. Rider

The AMPK (AMP-activated protein kinase)-related protein kinase subfamily of the human kinome comprises 12 members closely related to the catalytic α1/α2 subunits of AMPK. The precise role of the AMPK-related kinases and their in vivo substrates is rather unclear at present, but some are involved in regulating cell polarity, whereas others appear to control cellular differentiation. Of the 12 human AMPK-related protein kinase family members, 11 can be activated following phosphorylation of their T-loop threonine residue by the LKB1 complex. Nine of these AMPK-related kinases activated by LKB1 contain an UBA (ubiquitin-associated) domain immediately C-terminal to the kinase catalytic domain. In this issue of the Biochemical Journal, Jaleel et al. show that the presence of an UBA domain in AMP-related kinases allows LKB1-induced phosphorylation and activation. The findings have implications for understanding the molecular mechanisms of activation of this fascinating family of protein kinases. Also, mutations in the UBA domains of the AMP-related kinase genes might be present in families with Peutz–Jehgers syndrome and in other cancer patients.

2006 ◽  
Vol 394 (3) ◽  
pp. 545-555 ◽  
Author(s):  
Mahaboobi Jaleel ◽  
Fabrizio Villa ◽  
Maria Deak ◽  
Rachel Toth ◽  
Alan R. Prescott ◽  
...  

Recent work indicates that the LKB1 tumour suppressor protein kinase, which is mutated in Peutz–Jeghers cancer syndrome, phosphorylates and activates a group of protein kinases that are related to AMPK (AMP-activated protein kinase). Ten of the 14 AMPK-related protein kinases activated by LKB1, including SIK (salt-induced kinase), MARK (microtubule-affinity-regulating kinase) and BRSK (brain-specific kinase) isoforms, possess a ubiquitin-associated (UBA) domain immediately C-terminal to the kinase catalytic domain. These are the only protein kinases in the human genome known to possess a UBA domain, but their roles in regulating AMPK-related kinases are unknown. We have investigated the roles that the UBA domain may play in regulating these enzymes. Limited proteolysis of MARK2 revealed that the kinase and UBA domains were contained within a fragment that was resistant to trypsin proteolysis. SAXS (small-angle X-ray scattering) analysis of inactive and active LKB1-phosphorylated MARK2 revealed that activation of MARK2 is accompanied by a significant conformational change that alters the orientation of the UBA domain with respect to the catalytic domain. Our results indicate that none of the UBA domains found in AMPK-related kinases interact with polyubiquitin or other ubiquitin-like molecules. Instead, the UBA domains appear to play an essential conformational role and are required for the LKB1-mediated phosphorylation and activation of AMPK-related kinases. This is based on the findings that mutation or removal of the UBA domains of several AMPK-related kinases, including isoforms of MARK, SIK and BRSK, markedly impaired the catalytic activity and LKB1-mediated phosphorylation of these enzymes. We also provide evidence that the UBA domains do not function as LKB1–STRAD (STE20-related adaptor)–MO25 (mouse protein 25) docking/interacting sites and that mutations in the UBA domain of SIK suppressed the ability of SIK to localize within punctate regions of the nucleus. Taken together, these findings suggest that the UBA domains of AMPK-related kinases play an important role in regulating the conformation, activation and localization of these enzymes.


2009 ◽  
Vol 419 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Nigel G. Halford ◽  
Sandra J. Hey

The phosphorylation and dephosphorylation of proteins, catalysed by protein kinases and phosphatases, is the major mechanism for the transduction of intracellular signals in eukaryotic organisms. Signalling pathways often comprise multiple phosphorylation/dephosphorylation steps and a long-standing hypothesis to explain this phenomenon is that of the protein kinase cascade, in which a signal is amplified as it is passed from one step in a pathway to the next. This review represents a re-evaluation of this hypothesis, using the signalling network in which the SnRKs [Snf1 (sucrose non-fermenting-1)-related protein kinases] function as an example, but drawing also on the related signalling systems involving Snf1 itself in fungi and AMPK (AMP-activated protein kinase) in animals. In plants, the SnRK family comprises not only SnRK1, but also two other subfamilies, SnRK2 and SnRK3, with a total of 38 members in the model plant Arabidopsis. This may have occurred to enable linking of metabolic and stress signalling. It is concluded that signalling pathways comprise multiple levels not to allow for signal amplification, but to enable linking between pathways to form networks in which key protein kinases, phosphatases and target transcription factors represent hubs on/from which multiple pathways converge and emerge.


1996 ◽  
Vol 16 (8) ◽  
pp. 4172-4181 ◽  
Author(s):  
M Gale ◽  
S L Tan ◽  
M Wambach ◽  
M G Katze

Expression of the double-stranded RNA-activated protein kinase (PKR) is induced by interferons, with PKR activity playing a pivotal role in establishing the interferon-induced antiviral and antiproliferative states. PKR is directly regulated by physical association with the specific inhibitor, P58IPK, a cellular protein of the tetratricopeptide repeat (TPR) family, and K3L, the product of the corresponding vaccinia virus gene. P58IPK and K3L repress PKR activation and activity. To investigate the mechanism of P58IPK- and K3L-mediated PKR inhibition, we have used a combination of in vitro and in vivo binding assays to identify the interactive regions of these proteins. The P58IPK-interacting site of PKR was mapped to a 52-amino-acid aa segment (aa 244 to 296) spanning the ATP-binding region of the protein kinase catalytic domain. The interaction with PKR did not require the C-terminal DNA-J homology region of P58IPK but was dependent on the presence of the eukaryotic initiation factor 2-alpha homology region, mapping to the 34 aa within the sixth P58IPK TPR motif. Consistent with other TPR proteins, P58IPK formed multimers in vivo: the N-terminal 166 aa were both necessary and sufficient for complex formation. A parallel in vivo analysis to map the K3L-binding region of PKR revealed that like P58IPK , K3L interacted exclusively with the PKR protein kinase catalytic domain. In contrast, however, the K3L-binding region of PKR was localized to within aa 367 to 551, demonstrating that each inhibitor bound PKR in unique, nonoverlapping domains. These data, taken together, suggest that P58IPK and K3L may mediate PKR inhibition by distinct mechanisms. Finally, we will propose a model of PKR inhibition in which P58IPK or a P58IPK complex binds PKR and interferes with nucleotide binding and autoregulation, while formation of a PKR-K3L complex interferes with active-site function and/or substrate association.


2004 ◽  
Vol 383 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Ying WANG ◽  
Shuping LIANG ◽  
Qi-Guang XIE ◽  
Ying-Tang LU

An AtCRK1 [Arabidopsis thaliana CDPK (Ca2+-dependent protein kinase)-related protein kinase 1] has been characterized molecularly and biochemically. AtCRK1 contains the kinase catalytic domain and a CaM (calmodulin)-binding site. Our results demonstrated that AtCRK1 could bind CaM in a Ca2+-dependent manner. This kinase phosphorylated itself and substrates such as histone IIIS and syntide-2 in a Ca2+-independent manner and the activity was stimulated by several CaM isoforms through its CaM-binding domain. This domain was localized within a stretch of 39 amino acid residues at positions from 403 to 441 with Kd=67 nM for CaM binding. However, the stimulation amplification of the kinase activity of AtCRK1 by different CaM isoforms was similar.


2005 ◽  
Vol 25 (10) ◽  
pp. 4250-4261 ◽  
Author(s):  
Nikolay A. Spiridonov ◽  
Lily Wong ◽  
Patricia M. Zerfas ◽  
Matthew F. Starost ◽  
Svetlana D. Pack ◽  
...  

ABSTRACT Here we describe and characterize a small serine/threonine kinase (SSTK) which consists solely of the N- and C-lobes of a protein kinase catalytic domain. SSTK protein is highly conserved among mammals, and no close homologues were found in the genomes of nonmammalian organisms. SSTK specifically interacts with HSP90-1β, HSC70, and HSP70 proteins, and this association appears to be required for SSTK kinase activity. The SSTK transcript was most abundant in human and mouse testes but was also detected in all human tissues tested. In the mouse testis, SSTK protein was localized to the heads of elongating spermatids. Targeted deletion of the SSTK gene in mice resulted in male sterility due to profound impairment in motility and morphology of spermatozoa. A defect in DNA condensation in SSTK null mutants occurred in elongating spermatids at a step in spermiogenesis coincident with chromatin displacement of histones by transition proteins. SSTK phosphorylated histones H1, H2A, H2AX, and H3 but not H2B or H4 or transition protein 1 in vitro. These results demonstrate that SSTK is required for proper postmeiotic chromatin remodeling and male fertility. Abnormal sperm chromatin condensation is common in sterile men, and our results may provide insight into the molecular mechanisms underlying certain human infertility disorders.


1998 ◽  
Vol 18 (9) ◽  
pp. 5208-5218 ◽  
Author(s):  
Michael Gale ◽  
Collin M. Blakely ◽  
Bart Kwieciszewski ◽  
Seng-Lai Tan ◽  
Michelle Dossett ◽  
...  

ABSTRACT The PKR protein kinase is a critical component of the cellular antiviral and antiproliferative responses induced by interferons. Recent evidence indicates that the nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) can repress PKR function in vivo, possibly allowing HCV to escape the antiviral effects of interferon. NS5A presents a unique tool by which to study the molecular mechanisms of PKR regulation in that mutations within a region of NS5A, termed the interferon sensitivity-determining region (ISDR), are associated with sensitivity of HCV to the antiviral effects of interferon. In this study, we investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process. We observed that the NS5A ISDR, though necessary, was not sufficient for PKR interactions; we found that an additional 26 amino acids (aa) carboxyl to the ISDR were required for NS5A-PKR complex formation. Conversely, we localized NS5A binding to within PKR aa 244 to 296, recently recognized as a PKR dimerization domain. Consistent with this observation, we found that NS5A from interferon-resistant HCV genotype 1b disrupted kinase dimerization in vivo. NS5A-mediated disruption of PKR dimerization resulted in repression of PKR function and inhibition of PKR-mediated eIF-2α phosphorylation. Introduction of multiple ISDR mutations abrogated the ability of NS5A to bind to PKR in mammalian cells and to inhibit PKR in a yeast functional assay. These results indicate that mutations within the PKR-binding region of NS5A, including those within the ISDR, can disrupt the NS5A-PKR interaction, possibly rendering HCV sensitive to the antiviral effects of interferon. We propose a model of PKR regulation by NS5A which may have implications for therapeutic strategies against HCV.


2001 ◽  
Vol 355 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Diana L. LEFEBVRE ◽  
Yahong BAI ◽  
Nazanin SHAHMOLKY ◽  
Monika SHARMA ◽  
Raymond POON ◽  
...  

Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and reverse-transcriptase-mediated PCR demonstrated that mRNA transcripts for the SNF1/AMPK-related kinase (SNARK) were widely expressed in rodent tissues. The SNARK gene was localized to human chromosome 1q32 by fluorescent in situ hybridization. SNARK was translated in vitro to yield a single protein band of approx. 76kDa; Western analysis of transfected baby hamster kidney (BHK) cells detected two SNARK-immunoreactive bands of approx. 76-80kDa. SNARK was capable of autophosphorylation in vitro; immunoprecipitated SNARK exhibited phosphotransferase activity with the synthetic peptide substrate HMRSAMSGLHLVKRR (SAMS) as a kinase substrate. SNARK activity was significantly increased by AMP and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) in rat keratinocyte cells, implying that SNARK might be activated by an AMPK kinase-dependent pathway. Furthermore, glucose deprivation increased SNARK activity 3-fold in BHK fibroblasts. These findings identify SNARK as a glucose- and AICAriboside-regulated member of the AMPK-related gene family that represents a new candidate mediator of the cellular response to metabolic stress.


2007 ◽  
Vol 403 (3) ◽  
pp. 473-481 ◽  
Author(s):  
Ho-Jin Koh ◽  
Michael F. Hirshman ◽  
Huamei He ◽  
Yangfeng Li ◽  
Yasuko Manabe ◽  
...  

Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis.


2012 ◽  
Vol 442 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Craig R. Pigott ◽  
Halina Mikolajek ◽  
Claire E. Moore ◽  
Stephen J. Finn ◽  
Curtis W. Phippen ◽  
...  

eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called ‘α-kinases’ which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured ‘linker’ region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.


Sign in / Sign up

Export Citation Format

Share Document