scholarly journals Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family

2006 ◽  
Vol 400 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Tsutomu Kobayashi ◽  
Judith E. Sleeman ◽  
Michael W. H. Coughtrie ◽  
Brian Burchell

Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UDPGA for glucuronidation reactions. UDPGlcNAc (UDP-N-acetylglucosamine)-dependent UDPGA uptake was found both in rat liver microsomes and in microsomes prepared from the rat hepatoma cell line H4IIE. The latency of UGT activity in microsomes derived from rat liver and V79 cells expressing UGT1A6 correlated well with mannose-6-phosphatase latency, confirming the UGT in the recombinant cells retained a physiology similar to rat liver microsomes. In the present study, four cDNAs coding for NSTs were obtained; two were previously reported (UGTrel1 and UGTrel7) and two newly identified (huYEA4 and huYEA4S). Localization of NSTs within the human genome sequence revealed that huYEA4S is an alternatively spliced form of huYEA4. All the cloned NSTs were stably expressed in V79 (Chinese hamster fibroblast) cells, and were able to transport UDPGA after preloading of isolated microsomal vesicles with UDPGlcNAc. The highest uptake was seen with UGTrel7, which displayed a Vmax approx. 1% of rat liver microsomes. Treatment of H4IIE cells with β-naphthoflavone induced UGT protein expression but did not affect the rate of UDPGA uptake. Furthermore, microsomes from UGT1-deficient Gunn rat liver showed UDPGA uptake similar to those from control rats. These data show that NSTs can act as UDPGA transporters for glucuronidation reactions, and indicate that UGTs of the 1A family do not function as UDPGA carriers in microsomes. The cell line H4IIE is a useful model for the study of UDPGA transporters for glucuronidation reactions.

1983 ◽  
pp. 77-88
Author(s):  
Robert Barouki ◽  
Marie-Noële Chobert ◽  
Joélle Finidori ◽  
Marie-Claude Billon ◽  
Jacques Hanoune

1993 ◽  
Vol 293 (1) ◽  
pp. 173-179 ◽  
Author(s):  
C Espinet ◽  
A M Vargas ◽  
M R el-Maghrabi ◽  
A J Lange ◽  
S J Pilkis

The hormonal regulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression was studied in the rat hepatoma cell line FAO-1. Both 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were detected in FAO-1 cells, at 68% of the levels found in rat liver. Northern blot analysis showed that FAO-1 cells, like rat liver, contained a predominant species of bifunctional enzyme mRNA, which is 2.2 kb in size. A sensitive RNAase protection assay revealed the presence in FAO-1 cells of an additional mRNA species, which is generated when transcription is initiated from the skeletal muscle promoter of the rat liver/skeletal muscle gene. The liver/skeletal muscle mRNA ratio in FAO-1 cells was 10:1, which is similar to that observed in rat liver. In contrast, in another rat hepatoma cell line, FTO-2B, only the skeletal muscle mRNA was detected. Insulin and dexamethasone induced the liver bifunctional enzyme mRNA in FAO-1 cells by 2-4-fold and 10-20-fold respectively in a concentration- and time-dependent manner, and their effects were antagonized by cyclic AMP. Transcription of the gene in FAO-1 cells, measured by nuclear run-on assays, was also enhanced by dexamethasone and insulin. It is concluded that the FAO-1 cell line is similar to liver with respect to both the preferential use of the liver promoter of the gene and its regulation by hormones, and is therefore an excellent model for the study of the hepatic expression of this gene.


2002 ◽  
Vol 368 (1) ◽  
pp. 371-375 ◽  
Author(s):  
Matthew POLLARD ◽  
David MEREDITH ◽  
John D. McGIVAN

Glutamine is taken up into the rat hepatoma cell line H4-IIE-C3 by a Na+-dependent transport system which is specific for glutamine, alanine, serine, cysteine and asparagine and does not tolerate substitution of Na+ by Li+. Glutamine transport was relatively weakly inhibited by a 50-fold excess of leucine and was not inhibited by phenylalanine or N-methyl aminoisobutyrate. These general properties are characteristic of the recently identified ASCT/B0 family of transporters. Using a reverse transcriptase PCR-based homology cloning approach, we have characterized a cDNA for a novel member of this transporter family (H4-ASCT2) from H4-IIE-C3 cells. The cDNA encodes a 551-amino acid protein which exhibits similarities of between 75 and 85% with ASCT/B0 transporters previously cloned from other sources. When expressed in Xenopus oocytes, this transporter catalyses Na+-dependent glutamine uptake with characteristics very similar to those of glutamine uptake into the H4-IIE-C3 cells. This newly characterized transporter possesses a number of amino acid sequence differences from ASCT2 clones recently isolated from rat astroglial cells and from normal rat liver. In particular, the loop region between transmembrane helices 3 and 4 from H4-ASCT2 shares less than 60% sequence similarity with ASCT2 from rat liver; furthermore, there are some 25 single amino acid substitutions elsewhere in the H4-ASCT2 sequence compared with that from rat liver. Thus enhanced glutamine uptake in rat hepatoma cells is mediated by the expression of a novel ASCT/B0 transporter isoform rather than by increased expression of the ASCT2 mRNA found in normal rat liver.


1999 ◽  
Vol 340 (2) ◽  
pp. 405-409 ◽  
Author(s):  
Hiroshi YOKOTA ◽  
Hidetomo IWANO ◽  
Mari ENDO ◽  
Tsutomu KOBAYASHI ◽  
Hiroki INOUE ◽  
...  

Bisphenol A, an environmental oestrogenic chemical, was found to conjugate highly with glucuronic acid in male rat liver microsomes studied in vitro. In the various isoforms tested (1A1, 1A3, 1A5, 1A6, 1A7 and 2B1), glucuronidation of bisphenol A and of diethylstilboestrol, a synthetic crystalline compound possessing oestrogenic activity and known to be glucuronidated by liver microsomes, was catalysed by an isoform of UDP-glucuronosyltransferase (UGT), namely UGT2B1, which glucuronidates some endogenous androgens. UGT activity towards bisphenol A in liver microsomes and in UGT2B1 expressed in yeast AH22 cells (22.9 and 0.58 nmol/min per mg of microsomal proteins respectively) was higher than that towards diethylstilboestrol (75.0 and 4.66 pmol/min per mg of microsomal proteins respectively). UGT activities towards both bisphenol A and diethylstilboestrol were distributed mainly in the liver but were also observed at substantial levels in the kidney and testis. Northern blot analysis disclosed the presence of UGT2B1 solely in the liver, and about 65% of the male rat liver microsomal UGT activities towards bisphenol A were absorbed by the anti-UGT2B1 antibody. These results indicate that bisphenol A, in male rat liver, is glucuronidated by UGT2B1, an isoform of UGT.


1984 ◽  
Vol 223 (2) ◽  
pp. 461-465 ◽  
Author(s):  
B Burchell ◽  
N Blanckaert

Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.


Sign in / Sign up

Export Citation Format

Share Document