scholarly journals Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT

2007 ◽  
Vol 403 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Kyriakos E. Kypreos ◽  
Vassilis I. Zannis

We have investigated the ability of apoE (apolipoprotein E) to participate in the biogenesis of HDL (high-density lipoprotein) particles in vivo using adenovirus-mediated gene transfer in apoA-I−/− (apolipoprotein A-I) or ABCA1−/− (ATP-binding cassette A1) mice. Infection of apoA-I−/− mice with 2×109 pfu (plaque-forming units) of an apoE4-expressing adenovirus increased both HDL and the triacylglycerol-rich VLDL (very-low-density lipoprotein)/IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein) fraction and generated discoidal HDL particles. ABCA1−/− mice treated similarly failed to form HDL particles, suggesting that ABCA1 is essential for the generation of apoE-containing HDL. Combined infection of apoA-I−/− mice with a mixture of adenoviruses expressing both apoE4 (2×109 pfu) and human LCAT (lecithin:cholesterol acyltransferase) (5×108 pfu) cleared the triacylglycerol-rich lipoproteins, increased HDL and converted the discoidal HDL into spherical HDL. Similarly, co-infection of apoE−/− mice with apoE4 and human LCAT corrected the hypercholesterolaemia and generated spherical particles, suggesting that LCAT is essential for the maturation of apoE-containing HDL. Overall, the findings indicate that apoE has a dual functionality. In addition to its documented functions in the clearance of triacylglycerol-rich lipoproteins, it participates in the biogenesis of HDL-sized apoE-containing particles. HDL particles generated by this pathway may account at least for some of the atheroprotective functions of apoE.

2000 ◽  
Vol 41 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
Cyrille Maugeais ◽  
Uwe J.F. Tietge ◽  
Kazuhisa Tsukamoto ◽  
Jane M. Glick ◽  
Daniel J. Rader

1990 ◽  
Vol 272 (3) ◽  
pp. 735-741 ◽  
Author(s):  
J C Holder ◽  
V A Zammit ◽  
D S Robinson

The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.


1983 ◽  
Vol 212 (1) ◽  
pp. 173-182
Author(s):  
M M Ittmann ◽  
C Cooper

Very-low-density lipoprotein (VLDL), labelled in vivo with [9,10-3H]oleate, was taken up rapidly by liver after injection in vivo. Initially, radioactive lipoprotein remnants in the VLDL density range were present in liver as a bound extracellular pool that could be released by perfusion with polyphosphate or heparin. The bound remnant showed a decrease in mean diameter and an increased proportion of cholesteryl ester as a function of time after injection. When VLDL of different mean diameters was injected, it was found that: (1) total uptake by liver was independent of diameter; (2) small VLDL was not taken up more rapidly than large VLDL; and (3) Large VLDL lost no more triacylglycerol before binding than did small VLDL and larger species of mean diameter greater than 40 nm were bound. It is concluded that there is no unique VLDL remnant taken up by liver in vivo. When livers were perfused after binding radioactive VLDL in vivo, the lipoprotein was metabolized, with the production of water-soluble products, and this metabolism was inhibited by chloroquine.


Sign in / Sign up

Export Citation Format

Share Document