scholarly journals Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-β-lactamase from Aeromonas hydrophila

2008 ◽  
Vol 414 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Carine Bebrone ◽  
Christine Anne ◽  
Frédéric Kerff ◽  
Gianpiero Garau ◽  
Kris De Vriendt ◽  
...  

The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) β-lactamase from Aeromonas hydrophila is a Zn2+-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His118, Asp120, His196 and His263) and in substrate specificity (Val67, Thr157, Lys224 and Lys226), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp120 and His263, and thus is located in the ‘cysteine’ zinc-binding site. His118 and His196 residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val67 plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val67 also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys224 in the binding of substrate. Lys226 is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding.

2003 ◽  
Vol 2 (6) ◽  
pp. 1361-1375 ◽  
Author(s):  
Suneet Shukla ◽  
Preeti Saini ◽  
Smriti ◽  
Sudhakar Jha ◽  
Suresh V. Ambudkar ◽  
...  

ABSTRACT In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p. Cdr1p was subjected to site-directed mutational analysis. Among many mutant variants of Cdr1p, the phenotypes of F774A and ΔF774 were particularly interesting. The analysis of GFP-tagged mutant variants of Cdr1p revealed that a conserved F774, in predicted transmembrane segment 6, when changed to alanine showed increased binding of both photoaffinity analogues, while its deletion (ΔF774), as revealed by confocal microscopic analyses, led to mislocalization of the protein. The mislocalized ΔF774 mutant Cdr1p could be rescued to the plasma membrane as a functional transporter by growth in the presence of a Cdr1p substrate, cycloheximide. Our data for the first time show that the drug substrate-binding sites of Cdr1p exhibit striking similarities with those of mammalian drug-transporting P-glycoproteins and despite differences in topological organization, the transmembrane segment 6 in Cdr1p is also a major contributor to drug substrate-binding site(s).


2009 ◽  
Vol 284 (24) ◽  
pp. 16419-16431 ◽  
Author(s):  
Nathalie Selevsek ◽  
Sandrine Rival ◽  
Andreas Tholey ◽  
Elmar Heinzle ◽  
Uwe Heinz ◽  
...  

The reversible unfolding of metallo-β-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger α-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-β-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of γ-rays spectroscopic data. We suggest that this flexible “zinc arm” motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an “activation on demand” regulation of enzyme activity.


2019 ◽  
Vol 294 (20) ◽  
pp. 8046-8063 ◽  
Author(s):  
Gergely Gyimesi ◽  
Giuseppe Albano ◽  
Daniel G. Fuster ◽  
Matthias A. Hediger ◽  
Jonai Pujol-Giménez

The transport and ion-coupling mechanisms of ZIP transporters remain largely uncharacterized. Previous work in our laboratory has revealed that the solute carrier family 39 member A2 (SLC39A2/ZIP2) increases its substrate transport rate in the presence of extracellular H+. Here, we used a combination of in silico and in vitro techniques involving structural modeling, mutagenesis, and functional characterization in HEK293 cells to identify amino acid residues potentially relevant for both the ZIP2–H+ interaction and substrate binding. Our ZIP2 models revealed a cluster of charged residues close to the substrate–translocation pore. Interestingly, the H63A substitution completely abrogated pH sensitivity, and substitutions of Glu-67 and Phe-269 altered the pH and voltage modulation of transport. In contrast, substitution of Glu-106, which might be part of a dimerization interface, altered pH but not voltage modulation. Substitution of Phe-269, located close to the substrate-binding site, also affected substrate selectivity. These findings were supported by an additional model of ZIP2 that was based on the structure of a prokaryotic homolog, Bordetella bronchiseptica ZrT/Irt-like protein (bbZIP), and in silico pKa calculations. We also found that residues Glu-179, His-175, His-202, and Glu-276 are directly involved in the coordination of the substrate metal ion. We noted that, unlike bbZIP, human ZIP2 is predicted to harbor a single divalent metal-binding site, with the charged side chain of Lys-203 replacing the second bound ion. Our results provide the first structural evidence for the previously observed pH and voltage modulation of ZIP2-mediated metal transport, identify the substrate-binding site, and suggest a structure-based transport mechanism for the ZIP2 transporter.


Biochemistry ◽  
1994 ◽  
Vol 33 (19) ◽  
pp. 5877-5883 ◽  
Author(s):  
Chi-Ying F. Huang ◽  
Chiun-Jye Yuan ◽  
Siquan Luo ◽  
Donald J. Graves

2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


Sign in / Sign up

Export Citation Format

Share Document