Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes

2012 ◽  
Vol 445 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Benjamin W. Cook ◽  
Gary S. Shaw

E2 conjugating enzymes are the central enzymes in the ubiquitination pathway and are responsible for the transfer of ubiquitin and ubiquitin-like proteins on to target substrates. The secondary structural elements of the catalytic domain of these enzymes is highly conserved, including the sequence conservation of a three-residue HPN (His–Pro–Asn) motif located upstream of the active-site cysteine residue used for ubiquitin conjugation. Despite the vast structural knowledge of E2 enzymes, the catalytic mechanism of these enzymes remains poorly understood, in large part due to variation in the arrangements of the residues in the HPN motif in existing E2 structures. In the present study, we used the E2 enzyme HIP2 to probe the structures of the HPN motif in several other E2 enzymes. A combination of chemical-shift analysis, determination of the histidine protonation states and amide temperature coefficients were used to determine the orientation of the histidine ring and hydrogen-bonding arrangements within the HPN motif. Unlike many three-dimensional structures, we found that a conserved hydrogen bond between the histidine imidazole ring and the asparagine backbone amide proton, a common histidine protonation state, and a common histidine orientation exists for all E2 enzymes examined. These results indicate that the histidine within the HPN motif is orientated to structurally stabilize a tight turn motif in all E2 enzymes and is not orientated to interact with the asparagine side chain as proposed in some mechanisms. These results suggest that a common catalysis mechanism probably exists for all E2 conjugating enzymes to facilitate ubiquitin transfer.

2015 ◽  
Vol 71 (12) ◽  
pp. 2505-2512 ◽  
Author(s):  
Magdalena Schacherl ◽  
Angelika A. M. Montada ◽  
Elena Brunstein ◽  
Ulrich Baumann

The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins fromHelicobacterandSalmonella. The first crystal structure analysis of a U32 catalytic domain fromMethanopyrus kandleri(genemk0906) reveals a modified (βα)8TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to aStrep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.


2003 ◽  
Vol 31 (3) ◽  
pp. 615-619 ◽  
Author(s):  
E. Sim ◽  
K. Pinter ◽  
A. Mushtaq ◽  
A. Upton ◽  
J. Sandy ◽  
...  

The arylamine N-acetyltransferases (NATs) are a unique family of enzymes that catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of hydrazine and arylamine drugs and carcinogens. The NATs have been shown to be important in drug detoxification and carcinogen activation, with humans possessing two isoenzymes encoded by polymorphic genes. This polymorphism has pharmacogenetic implications, leading to different rates of inactivation of drugs, including the anti-tubercular agent isoniazid and the anti-hypertensive drug hydralazine. Mice provide a good model for human NAT, allowing genetic manipulation of expression to explore possible endogenous roles of these enzymes. The first three-dimensional NAT structure was resolved for NAT from Salmonella typhimurium, and subsequently the structure of NAT from Mycobacterium smegmatis has been elucidated. These identified a ‘Cys-His-Asp’ catalytic triad (conserved in all NATs), which is believed to be responsible for the activation of the active site cysteine residue. As more genomic data become available, NAT homologues continue to be found in prokaryotic species, many of which are pathogenic, including Mycobacterium tuberculosis. The discovery of NAT in M. tuberculosis is particularly significant, since this enzyme participates in inactivation of isoniazid in the bacterium, with implications for isoniazid resistance. Structural studies on NAT proteins and phenotypic analyses of organisms (both mice and prokaryotes) following genetic modifications of the nat genes are leading to an understanding of the potentially diverse roles of NAT in endogenous and xenobiotic metabolism. These studies have indicated that NAT, particularly in Mycobacteria, has the potential to be a drug target. Combinatorial chemical approaches, together with in silico structural studies, will allow for advances in the identification of NAT substrates and inhibitors, both as experimental tools and as potential drugs.


2020 ◽  
Vol 295 (30) ◽  
pp. 10195-10211 ◽  
Author(s):  
Krista M. Armbruster ◽  
Gloria Komazin ◽  
Timothy C. Meredith

All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base–promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.


2013 ◽  
Vol 69 (10) ◽  
pp. 1889-1900 ◽  
Author(s):  
Tianyu Wang ◽  
Jinjing Ding ◽  
Ying Zhang ◽  
Da-Cheng Wang ◽  
Wei Liu

The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS ofPseudomonas aeruginosatransports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for nichesviaamidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.


2006 ◽  
Vol 398 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Zheng Xu ◽  
So Fun Chau ◽  
Kwok Ho Lam ◽  
Ho Yin Chan ◽  
Tzi Bun Ng ◽  
...  

SUMO (small ubiquitin-related modifier)-specific proteases catalyse the maturation and de-conjugation processes of the sumoylation pathway and modulate various cellular responses including nuclear metabolism and cell cycle progression. The active-site cysteine residue is conserved among all known SUMO-specific proteases and is not substitutable by serine in the hydrolysis reactions demonstrated previously in yeast. We report here that the catalytic domain of human protease SENP1 (SUMO-specific protease 1) mutant SENP1CC603S carrying a mutation of cysteine to serine at the active site is inactive in maturation and de-conjugation reactions. To further understand the hydrolytic mechanism catalysed by SENP1, we have determined, at 2.8 Å resolution (1 Å=0.1 nm), the X-ray structure of SENP1CC603S–SUMO-1 complex. A comparison of the structure of SENP2–SUMO-1 suggests strongly that SUMO-specific proteases require a self-conformational change prior to cleavage of peptide or isopeptide bond in the maturation and de-conjugation processes respectively. Moreover, analysis of the interface of SENP1 and SUMO-1 has led to the identification of four unique amino acids in SENP1 that facilitate the binding of SUMO-1. By means of an in vitro assay, we further demonstrate a novel function of SENP1 in hydrolysing the thioester linkage in E1-SUMO and E2-SUMO complexes. The results disclose a new mechanism of regulation of the sumoylation pathway by the SUMO-specific proteases.


2014 ◽  
Vol 458 (3) ◽  
pp. 421-437 ◽  
Author(s):  
Donald E. Spratt ◽  
Helen Walden ◽  
Gary S. Shaw

The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michał Zieliński ◽  
Jaeok Park ◽  
Barry Sleno ◽  
Albert M. Berghuis

AbstractMacrolides are a class of antibiotics widely used in both medicine and agriculture. Unsurprisingly, as a consequence of their exensive usage a plethora of resistance mechanisms have been encountered in pathogenic bacteria. One of these resistance mechanisms entails the enzymatic cleavage of the macrolides’ macrolactone ring by erythromycin esterases (Eres). The most frequently identified Ere enzyme is EreA, which confers resistance to the majority of clinically used macrolides. Despite the role Eres play in macrolide resistance, research into this family enzymes has been sparse. Here, we report the first three-dimensional structures of an erythromycin esterase, EreC. EreC is an extremely close homologue of EreA, displaying more than 90% sequence identity. Two structures of this enzyme, in conjunction with in silico flexible docking studies and previously reported mutagenesis data allowed for the proposal of a detailed catalytic mechanism for the Ere family of enzymes, labeling them as metal-independent hydrolases. Also presented are substrate spectrum assays for different members of the Ere family. The results from these assays together with an examination of residue conservation for the macrolide binding site in Eres, suggests two distinct active site archetypes within the Ere enzyme family.


The cysteine proteinases form a group of enzymes which depend for their enzymic activity on the thiol group of a cysteine residue. Several which occur in plants have been investigated extensively and include papain, ficin and stem bromelain (Smith & Kimmel i960). Although the term papain, introduced last century to describe the proteolytic principle in papaya latex (Wurtz & Bouchut 1879) is still used to describe crude dried latex, the crystalline enzyme is readily obtained (Kimmel & Smith 1954). Ficin is known to consist of several closely related enzymes which have been resolved (Sgarbieri, Gupte, Kramer & Whitaker 1964), but for most structural and mechanistic studies the unresolved mixture of enzymes has been used. Stem bromelain also appears to be a mixture of at least two proteolytic enzymes which have not yet been resolved (Ota, Moore & Stein 1962; Murachi 1964). In spite of the recognized heterogeneity of ficin and stem bromelain, it does seem that both structurally and mechanistically they are similar to papain. Only one bacterial cysteine proteinase has received a detailed study, namely, streptococcal proteinase, and it appears to have little or no relation in its amino acid sequence with the plant enzymes (Liu, Stein, Moore & Elliott 1965). The functional groups involved in the catalytic mechanism are apparently the same as in the plant proteinases (Gerwin, Stein & Moore 1966; Liu 1967; Husain & Lowe 1968 a , c ), but the mechanism of action has not been extensively studied. It may well be however that the plant and bacterial cysteine proteinases have converged onto a similar mechanism of action by two independent evolutionary pathways, as now seems apparent for the animal and bacterial serine proteinases (Alden, Wright & Kraut, this volume, p. 119). Because the tertiary crystal structure of papain (Drenth, Jansonius, Koekoek, Swen & Wolthers 1968; see also the preceding paper, p. 231) is now known, a critical survey of this enzyme is apposite.


2001 ◽  
Vol 356 (1) ◽  
pp. 217-222 ◽  
Author(s):  
Ricardo FRANCO ◽  
Alice S. PEREIRA ◽  
Pedro TAVARES ◽  
Arianna MANGRAVITA ◽  
Michael J. BARBER ◽  
...  

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical for the catalytic process by controlling the release of the product.


Sign in / Sign up

Export Citation Format

Share Document