Collagen structure: new tricks from a very old dog

2016 ◽  
Vol 473 (8) ◽  
pp. 1001-1025 ◽  
Author(s):  
Jordi Bella

The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.

Peptides 1990 ◽  
1991 ◽  
pp. 514-515
Author(s):  
A. Scatturin ◽  
G. Vertuani ◽  
G. D’Auria ◽  
M. Gargiulo ◽  
L. Paolillo ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3067 ◽  
Author(s):  
Ryl ◽  
Brodowski ◽  
Kowalski ◽  
Lipinska ◽  
Niedzialkowski ◽  
...  

The selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how different dihydroxybenzene isomers interact with aluminum alloy 5754 surface, reducing its corrosion rate in bicarbonate buffer (pH = 11). We show that the highest inhibition efficiency among tested compounds belongs to catechol at 10 mM concentration, although the differences were moderate. Utilization of novel impedance approach to adsorption isotherm determination made it possible to confirm that while resorcinol chemisorbs on aluminum surface, catechol and quinol follows the ligand exchange model of adsorption. Unlike catechol and quinol, the protection mechanism of resorcinol is bound to interaction with insoluble aluminum corrosion products layer and was only found efficient at concentration of 100 mM (98.7%). The aforementioned studies were confirmed with Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analyses. There is a significant increase in the corrosion resistance offered by catechol at 10 mM after 24 h exposure in electrolyte: from 63 to 98%, with only negligible changes in inhibitor efficiency observed for resorcinol at the same time. However, in the case of resorcinol a change in electrolyte color was observed. We have revealed that the differentiating factor is the keto-enol tautomerism. The Nuclear Magnetic Resonance (NMR) studies of resorcinol indicate the keto form in structure in presence of NaOH, while the chemical structure of catechol does not change significantly in alkaline environment.


Gels ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 46
Author(s):  
Hon Wei Ng ◽  
Yi Zhang ◽  
Rafea Naffa ◽  
Sujay Prabakar

Collagen-based hydrogels are investigated extensively in tissue engineering for their tunable physiochemical properties, biocompatibility and biodegradability. However, the effect of the integrity of the collagen triple helical structure on biodegradability is yet to be studied. In this study, we monitored the degradation of intact collagen (C-coll) and hydrolyzed collagen (D-coll) hydrogels in collagenase Clostridium histolyticum to understand their degradation process. Our results show that when peptides are present on the surface of the fibrils of D-coll hydrogels, cleavage of amide bonds occur at a much higher rate. The fibrillar structure of D-coll hydrogel results in a more pronounced breakdown of the gel network and dissolution of collagen peptides. The results from this work will improve the understanding of enzymatic degradation and the resulting bioabsorption of collagen materials used in drug delivery systems and scaffolds.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Éimhín M. Ní Mhuircheartaigh ◽  
Silvia Giordani ◽  
Donal MacKernan ◽  
Sharon M. King ◽  
David Rickard ◽  
...  

The importance of molecular conformation to the nature and strength of noncovalent interactions existing between a series of increasingly nonplanar tetraphenylporphyrin (TPP) derivatives and carbon nanotubes was systematically investigated experimentally in solution using a range of linear and nonlinear optical techniques. Additional complementary molecular dynamics studies were found to support the experimental observations. Convincing evidence of binding between single walled nanotubes (SWNTs) and some of these porphyrins was discovered, and a nonplanar macrocycle conformation was found to increase the likelihood of noncovalent binding onto nanotubes. Nonlinear optical studies showed that the optical limiting behavior of the TPP derivatives deteriorated with increasing porphyrin nonplanarity, but that formation of nanotube composites dramatically improved the optical limiting properties of all molecules studied. It was also found that the significant photoluminescence quenching behavior reported in the literature for such porphyrin/SWNT composites is at least partly caused by photoluminescence and excitation self-absorption and is, therefore, an artifact of the system.


2004 ◽  
Vol 18 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Yuji O. Kamatari ◽  
Christopher M. Dobson ◽  
Takashi Konno

Pepsin, a gastric aspartic proteinase, is a zymogen‒derived protein that undergoes irreversible alkaline denaturation at pH 6–7. Detailed knowledge of the structure of the alkaline‒denatured state is an important step in understanding the mechanism of the formation of the active enzyme. It has been established in a number of studies that the alkaline‒denatured state of pepsin (the IPstate) is composed of a compact C‒terminal lobe and a largely unstructured N‒terminal lobe. In the present study, we have investigated the residual structure in the IPstate in more detail, using limited proteolysis to isolate and characterize a tightly folded core region from this partially denatured pepsin. The isolated core region corresponds to the 141 C‒terminal residues of the pepsin molecule, which in the fully native state forms one of the two lobes of the structure. A comparative study using NMR and CD spectroscopy has revealed, however, that the N‒terminal lobe contributes a substantial amount of additional residual structure to the IPstate of pepsin. CD spectra indicate in addition that significant non‒native α-helical structure is present in the C‒terminal lobe of the structure when the N‒terminal lobe of pepsin is either unfolded or removed by proteolysis. This study demonstrates that the structure of pepsin in the IPstate is significantly more complex than that of a fully folded C‒terminal lobe connected to an unstructured N‒terminal lobe. The “misfolding” in this state could inhibit the proper refolding of the protein when returned to conditions that stabilize the native state.


1995 ◽  
Vol 60 (1) ◽  
pp. 268-271 ◽  
Author(s):  
C. Hackett Bushweller ◽  
Jay H. Brown ◽  
Christine M. DiMeglio ◽  
Gordon W. Gribble ◽  
Jefferson T. Eaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document