scholarly journals Precise elimination of the N-terminal domain of histone H1

1982 ◽  
Vol 203 (3) ◽  
pp. 577-582 ◽  
Author(s):  
L Böhm ◽  
P Sautière ◽  
P D Cary ◽  
C Crane-Robinson

The proteinase from mouse submaxillary gland was used to cleave total calf thymus histone H1 between residues 32 and 33. The C-terminal peptide, comprising residues 33 to the C-terminus, was purified and identified by amino acids analysis and Edman degradation. Spectroscopic characterization by n.m.r. for tertiary structure and by c.d. for secondary structure shows the globular domain of the parent histone H1 to be preserved intact in the peptide. It has therefore lost only the N-terminal domain and is a fragment of histone H1 comprising the globular plus C-terminal domains only. Precise elimination of only the N-terminal domain makes the fragment suitable for testing domain function in histone H1.

1981 ◽  
Vol 195 (1) ◽  
pp. 171-176 ◽  
Author(s):  
V Giancotti ◽  
S Cosimi ◽  
P D Cary ◽  
C Crane-Robinson ◽  
G Geraci

The separation and purification of histone H1 from the sperm of the sea-urchin Sphaerechinus granularis is described. Physical studies were used to compare this histone H1 molecule with H1 histones from other species. C.d. and 270 MHz n.m.r. spectroscopy indicate that, despite significant compositional differences from other sea-urchin sperm H1 histones, their secondary and tertiary structures are very similar. A large difference in helicity was, however, found between S. granularis histone H1 and calf thymus histone H1, and their n.m.r. and fluorescence spectra also differ considerably. It is concluded that secondary structure and tertiary structure have not been conserved in the evolution of the H1 histone family.


Biochemistry ◽  
1994 ◽  
Vol 33 (37) ◽  
pp. 11079-11086 ◽  
Author(s):  
Corinne Cerf ◽  
Guy Lippens ◽  
V. Ramakrishnan ◽  
Serge Muyldermans ◽  
Alain Segers ◽  
...  

1981 ◽  
Vol 197 (3) ◽  
pp. 655-660 ◽  
Author(s):  
V Giancotti ◽  
E Russo ◽  
S Cosimi ◽  
P D Cary ◽  
C Crane-Robinson

Tryptic digestion of histone H1 from the sperm of the sea urchin Sphaerechinus granularis leaves a limiting peptide of approx. 80 residues that is of similar size to the limit peptide from calf thymus H1 or chicken erythrocyte H5. The S. granularis limit peptide folds to form tertiary structure similar to that of the intact parent histone H1 (shown by n.m.r. spectra), but the helical content is decreased by the digestion from 64 residues to 28. In contrast, intact calf thymus H1 and chicken erythrocyte H5 histones have only about 28 helical residues, which are preserved in their limit peptides. The extra helix in S. granularis is shown to be rapidly digested away by trypsin, and its location in histone H1 is discussed. A possible relationship of this structural feature to the length of linker DNA is proposed.


2004 ◽  
Vol 279 (19) ◽  
pp. 20028-20034 ◽  
Author(s):  
Michael J. Hendzel ◽  
Melody A. Lever ◽  
Ellen Crawford ◽  
John P. H. Th'ng

We have used a combination of kinetic measurements and targeted mutations to show that the C-terminal domain is required for high-affinity binding of histone H1 to chromatin, and phosphorylations can disrupt binding by affecting the secondary structure of the C terminus. By measuring the fluorescence recovery after photo-bleaching profiles of green fluorescent protein-histone H1 proteins in living cells, we find that the deletion of the N terminus only modestly reduces binding affinity. Deletion of the C terminus, however, almost completely eliminates histone H1.1 binding. Specific mutations of the C-terminal domain identified Thr-152 and Ser-183 as novel regulatory switches that control the binding of histone H1.1in vivo. It is remarkable that the single amino acid substitution of Thr-152 with glutamic acid was almost as effective as the truncation of the C terminus to amino acid 151 in destabilizing histone H1.1 bindingin vivo. We found that modifications to the C terminus can affect histone H1 binding dramatically but have little or no influence on the charge distribution or the overall net charge of this domain. A comparison of individual point mutations and deletion mutants, when reviewed collectively, cannot be reconciled with simple charge-dependent mechanisms of C-terminal domain function of linker histones.


1985 ◽  
Vol 17 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.N. Khrapunov ◽  
A.F. Protas ◽  
A.V. Sivolob ◽  
A.I. Dragan ◽  
G.D. Berdyshev

1990 ◽  
Vol 265 (3) ◽  
pp. 739-746 ◽  
Author(s):  
J R Vanfleteren ◽  
S M Van Bun ◽  
I De Baere ◽  
J J Van Beeumen

The complete amino acid sequence of a minor isoform (H1.2) of histone H1 from the nematode Caenorhabditis elegans was determined. The amino acid chain consists of 190 residues and has a blocked N-terminus. Histone subtype H1.2 is 17 residues shorter than the major isoform H1.1, mainly as the result of deletions of short peptide fragments. Considerable divergence from isoform H1.1 has occurred in the N-terminal domain and the very C-terminus of the molecule, but the central globular domain and most of the C-terminal domain, including two potential phosphorylation sites, have been well conserved. Secondary-structure predictions for both H1 isoforms reveal a high potential for helix formation in the N-terminal region 1-33 of isoform H1.1 whereas the corresponding region in isoform H1.2 has low probability of being found in alpha-helix. No major differences in secondary structure are predicted for other parts of both H1 subtypes. The aberrant conformation of isoform H1.2 may be indicative of a significantly different function.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


1984 ◽  
Vol 259 (20) ◽  
pp. 12714-12717
Author(s):  
M A Navia ◽  
J P Springer ◽  
M Poe ◽  
J Boger ◽  
K Hoogsteen

2015 ◽  
Vol 145 (4) ◽  
pp. 303-314 ◽  
Author(s):  
Joshua D. Ohrtman ◽  
Christin F. Romberg ◽  
Ong Moua ◽  
Roger A. Bannister ◽  
S. Rock Levinson ◽  
...  

CaV1.1 acts as both the voltage sensor that triggers excitation–contraction coupling in skeletal muscle and as an L-type Ca2+ channel. It has been proposed that, after its posttranslational cleavage, the distal C terminus of CaV1.1 remains noncovalently associated with proximal CaV1.1, and that tethering of protein kinase A to the distal C terminus is required for depolarization-induced potentiation of L-type Ca2+ current in skeletal muscle. Here, we report that association of the distal C terminus with proximal CaV1.1 cannot be detected by either immunoprecipitation of mouse skeletal muscle or by colocalized fluorescence after expression in adult skeletal muscle fibers of a CaV1.1 construct labeled with yellow fluorescent protein (YFP) and cyan fluorescent protein on the N and C termini, respectively. We found that L-type Ca2+ channel activity was similar after expression of constructs that either did (YFP-CaV1.11860) or did not (YFP-CaV1.11666) contain coding sequence for the distal C-terminal domain in dysgenic myotubes null for endogenous CaV1.1. Furthermore, in response to strong (up to 90 mV) or long-lasting prepulses (up to 200 ms), tail current amplitudes and decay times were equally increased in dysgenic myotubes expressing either YFP-CaV1.11860 or YFP-CaV1.11666, suggesting that the distal C-terminal domain was not required for depolarization-induced potentiation. Thus, our experiments do not support the existence of either biochemical or functional interactions between proximal CaV1.1 and the distal C terminus.


Sign in / Sign up

Export Citation Format

Share Document