scholarly journals Regulation of proline 3-hydroxylation and prolyl 3-hydroxylase and 4-hydroxylase activities in transformed cells

1982 ◽  
Vol 206 (3) ◽  
pp. 499-503 ◽  
Author(s):  
K Majamaa ◽  
R Myllylä ◽  
K Alitalo ◽  
A Vaheri

Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.

1974 ◽  
Vol 84 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Stuart J. Burstin ◽  
Hartmut C. Renger ◽  
Claudio Basilico

1979 ◽  
Vol 43 (7) ◽  
pp. 1553-1561 ◽  
Author(s):  
Kenji KOHNO ◽  
Akiyoshi HIRAGUN ◽  
Hiromi MITSUI ◽  
Akira TAKATSUKI ◽  
Gakuzo TAMURA

1997 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
M.E. Truckenmiller ◽  
Ora Dillon-Carter ◽  
Carlo Tornatore ◽  
Henrietta Kulaga ◽  
Hidetoshi Takashima ◽  
...  

In vitro growth properties of three CNS-derived cell lines were compared under a variety of culture conditions. The M213-20 and J30a cell lines were each derived from embryonic CNS culture with the temperature-sensitive (ts) allele of SV40 large T antigen, tsA58, while the A7 cell line was immortalized using wild-type SV40 large T antigen. Cells immortalized with tsA58 SV40 large T proliferate at the permissive temperature, 33° C, while growth is expected to be suppressed at the nonpermissive temperature, 39.5°C. Both the M213-20 and J30a cell lines were capable of proliferating at 39.5°C continuously for up to 6 mo. All three cell lines showed no appreciable differences in growth rates related to temperature over a 7-day period in either serum-containing or defined serum-free media. The percentage of cells in S-phase of the cell cycle did not decrease or was elevated at 39.5°C for all three cell lines. After 3 wk at 39.5°C, the three cell lines also showed positive immunostaining using two monoclonal antibodies reacting with different epitopes of SV40 large T antigen. Double strand DNA sequence analyses of a 300 base pair (bp) fragment of the large T gene from each cell line, which included the ts locus, revealed mutations in both the J30a and M213-20 cell lines. The J30a cell line ts mutation had reverted to wild type, and two additional loci with bp substitutions with predicted amino acid changes were also found. While the ts mutation of the M213-20 cells was retained, an additional bp substitution with a predicted amino acid change was found. The A7 cell line sequence was identical to the reference wild-type sequence. These findings suggest that (a) nucleic acid sequences in the temperature-sensitive region of the tsA58 allele of SV40 large T are not necessarily stable, and (b) temperature sensitivity of cell lines immortalized with tsA58 is not necessarily retained.


2015 ◽  
Vol 209 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Anaïs Aulas ◽  
Guillaume Caron ◽  
Christos G. Gkogkas ◽  
Nguyen-Vi Mohamed ◽  
Laurie Destroismaisons ◽  
...  

G3BP1, a target of TDP-43, is required for normal stress granule (SG) assembly, but the functional consequences of failed SG assembly remain unknown. Here, using both transformed cell lines and primary neurons, we investigated the functional impact of this disruption in SG dynamics. While stress-induced translational repression and recruitment of key SG proteins was undisturbed, depletion of G3BP1 or its upstream regulator TDP-43 disturbed normal interactions between SGs and processing bodies (PBs). This was concomitant with decreased SG size, reduced SG–PB docking, and impaired preservation of polyadenylated mRNA. Reintroduction of G3BP1 alone was sufficient to rescue all of these phenotypes, indicating that G3BP1 is essential for normal SG–PB interactions and SG function.


Sign in / Sign up

Export Citation Format

Share Document