scholarly journals Loss of the transferrin receptor during the maturation of sheep reticulocytes in vitro. An immunological approach

1983 ◽  
Vol 210 (1) ◽  
pp. 37-47 ◽  
Author(s):  
B T Pan ◽  
R Blostein ◽  
R M Johnstone

Sheep reticulocyte-specific antiserum absorbed with mature sheep red cells has been used to isolate and identify reticulocyte-specific plasma-membrane proteins and to monitor their loss during incubation in vitro. Specific precipitation of labelled plasma-membrane proteins is obtained when detergent-solubilized extracts of 125I-labelled reticulocyte plasma membranes are incubated with this antiserum and Staphyloccus aureus, but not when mature-cell plasma membranes are treated similarly. During maturation of reticulocytes in vitro (up to 4 days at 37 degrees C), there is a marked decrease in the immunoprecipitable material. The anti-reticulocyte-specific antibodies have been identified as anti-(transferrin receptor) antibodies. By using these antibodies as a probe, the transferrin receptor has been shown to have a subunit molecular weight of 93 000. The data are consistent with reported molecular weights of this receptor and with the proposal that the receptor may exist as a dimer, since [125I]iodotyrosyl-peptide maps of the 93 000- and 186 000-mol.wt. components isolated are shown to be identical. Evidence is presented for the transmembrane nature of the receptor and for the presence of different binding sites for transferrin and these antibodies on the receptor.

1996 ◽  
Vol 109 (7) ◽  
pp. 1667-1676 ◽  
Author(s):  
A. Mayer ◽  
I.E. Ivanov ◽  
D. Gravotta ◽  
M. Adesnik ◽  
D.D. Sabatini

An in vitro system to study the transport of plasma membrane proteins from the TGN to the basolateral plasma membrane of polarized MDCK cells has been developed in which purified cell fractions are combined and transport between them is studied under controlled conditions. In this system, a donor Golgi fraction derived from VSV or influenza virus-infected MDCK cells, in which 35S-labeled viral glycoproteins were allowed to accumulate in the TGN during a low temperature block, is incubated with purified immobilized basolateral plasma membranes that have their cytoplasmic face exposed and are obtained by shearing-lysis of MDCK monolayers grown on cytodex beads. Approximately 15–30% of the labeled glycoprotein molecules are transferred from the Golgi fraction to the acceptor plasma membranes and are recovered with the sedimentable (1 g) beads. Transport is temperature, energy and cytosol dependent, and is abolished by alkylation of SH groups and inhibited by the presence of GTP-gamma-S, which implicates GTP-binding proteins and the requirement for GTP hydrolysis in one or more stages of the transport process. Endo H-resistant glycoprotein molecules that had traversed the medial region of the Golgi apparatus are preferentially transported and their luminal domains become accessible to proteases, indicating that membrane fusion with the plasma membrane takes place in the in vitro system. Mild proteolysis of the donor or acceptor membranes abolishes transport, suggesting that protein molecules exposed on the surface of these membranes are involved in the formation and consumption of transport intermediates, possibly as addressing and docking proteins, respectively. Surprisingly, both VSV-G and influenza HA were transported with equal efficiencies to the basolateral acceptor membranes. However, low concentrations of a microtubular protein fraction preferentially inhibited the transport of HA, although this effect was not abolished by microtubule depolymerizing agents. This system shows great promise for elucidating the mechanisms that effect the proper sorting of plasma membrane proteins in the TGN and their subsequent targeting to the appropriate acceptor membrane.


2010 ◽  
Vol 22 (1) ◽  
pp. 294
Author(s):  
R. F. Gonçalves ◽  
R. P. Bertolla ◽  
V. H. Barnabe

Sperm-egg interaction is a complex molecular process leading to gamete fusion mediated by a series of molecular interactions. Some integrin subunits, which are adhesion molecules, are expressed on human and mouse sperm, but major questions about the roles of integrins in sperm-oocyte fusion remain unsolved. This study was conducted to determine the presence of α5 and αV integrins on cattle (Bos indicus and Bos taurus) sperm, and whether fertilization might be affected by treating sperm with antibodies to these integrin subunits. To determine if integrin subunits were present on sperm, sperm plasma membrane proteins were subjected to 1-dimensional SDS-PAGE and Western blot analysis. Frozen-thawed sperm, donated by ABS Pecplan, were centrifuged at 700 × g for 10 min, washed twice with warm PBS (Nutricell®, Campinas, Sao Paulo, Brazil), and resuspended in Jones buffer (0.4% deoxyclolic acid, 8.9 M sucrose, 0.1 M Tris, pH 8.5) for 60 min at 4°C to solubilize sperm plasma membranes. Plasma membrane proteins were then separated by SDS-PAGE and transferred to nitrocellulose. The resulting blots were probed with αV integrin antibody (Calbiochem®, San Diego, CA, USA) or α5 integrin antibody (Calbiochem) and developed using ECL. Frozen-thawed spermatozoa were washed by a 45/90% layered Percoll gradient centrifugation and incubated for 1 h in fertilization medium (FM; 1), FM with anti-integrin αV IgG (2), and FM with anti-integrin a5 IgG (3). In vitro-matured cattle oocytes were incubated (39°C, 5% CO2 in air) with 1 × 105 washed, pretreated spermatozoa per 25 oocytes for 18 h. The oocytes were fixed in acid alcohol, stained with 1% acetate-orcein, and observed to determine the presence of pronuclei. Each experiment was repeated 4 times and data from each experiment were pooled. Approximately 80 to 90 oocytes per treatment for fertilization were evaluated in each replicate. Weighted least squares means were used to analyze fertilization data (SAS software, SAS Institute, Cary, NC, USA). The significance level for all tests was P < 0.05. Both antibodies for α5 (35 kDa) and αV (34 kDa) integrins showed immunoreactivity on Western blots of sperm membrane proteins. Addition of anti-integrin αV, and anti-integrin α5 decreased fertilization (P < 0.05) compared with the control: (1) 94.1 ± 1.0%; (2) 18.2 ± 1.0%; (3) 12.2 ± 1.0%. These findings show that αV and α5 integrins are expressed by cattle spermatozoa and may be involved in sperm-oocyte fusion and fertilization. This study was supported by FAPESP grants (2007/00363-5 and 2006/06008-0, Brazil). We acknowledge Nutricell and ABS Pecplan for their generous contribution.


1978 ◽  
Vol 174 (3) ◽  
pp. 873-881 ◽  
Author(s):  
G A Cates ◽  
P C Holland

1. Surface labelling of plasma-membrane proteins with 125I, catalysed by lactoperoxidase, and radioactive l-fucose incorporation into glycoprotein were used as plasma-membrane markers for skeletal-muscle cells in culture. 2. Plasma membranes were prepared at various stages of myogenesis in vitro and rates of synthesis and accumulation of proteins in the membranes were compared. 3. Increased synthesis and accumulation of a protein of apparent mol.wt. 70000 occurred in the plasma-membrane fraction concomitant with the onset of myoblast fusion. 4. In cultures in which fusion of myoblasts was inhibited by 5′-bromo-2-deoxyuridine, synthesis and accumulation of the protein of apparent mol.wt. 70000 was selectively inhibited. 5. It is suggested the protein of apparent mol.wt. 70000 may be involved in the process of myoblast fusion.


Author(s):  
Sophie Duban-Deweer ◽  
Johan Hachani ◽  
Barbara Deracinois ◽  
Romo Cecchelli ◽  
Christophe Flahaut ◽  
...  

1986 ◽  
Vol 103 (2) ◽  
pp. 351-360 ◽  
Author(s):  
J R Apgar ◽  
M F Mescher

Plasma membranes of P815 mastocytoma cells contain a set of proteins that remain selectively insoluble upon extraction of the membranes with Triton X-100, and appear to form a membrane skeletal matrix independent of the filamentous cytoskeletal systems. EGTA treatment of the matrix was found to release approximately 25% of the protein as polypeptides of 70, 69, 38, and 36 kD, all of which appear to be peripheral components associated with the cytoplasmic face of the plasma membrane via divalent cation-dependent interactions. About 75% of the total matrix protein was recovered in the EGTA-insoluble fraction. Actin accounted for approximately 5% of the total protein in the EGTA-insoluble fraction. The rest was accounted for by two novel proteins of 20 and 40 kD which, despite their relatively low molecular weights, do not enter SDS PAGE gels. Together these proteins account for approximately 15% of the total plasma membrane protein, and are thus present in much higher amounts than any other characterized protein of nucleated cell plasma membranes. Based on the extensive associations of these proteins to form very large detergent-insoluble structures, we propose that they may be named agorin I, the 20-kD protein, and agorin II, the 40-kD protein, from the Greek agora meaning assembly. The amount and properties of these proteins and the appearance of the EGTA-insoluble material in thin-section electron micrographs indicate that the agorins are the major structural elements of the membrane matrix, and thus of the putative membrane skeleton.


1985 ◽  
Vol 100 (4) ◽  
pp. 1115-1125 ◽  
Author(s):  
A L Hubbard ◽  
J R Bartles ◽  
L T Braiterman

We have localized and identified five rat hepatocyte plasma membrane proteins using hybridoma technology in combination with morphological and biochemical methods. Three different membrane preparations were used as immunogens: isolated hepatocytes, a preparation of plasma membrane sheets that contained all three recognizable surface domains of the intact hepatocyte (sinusoidal, lateral, and bile canalicular), and a glycoprotein subfraction of that plasma membrane preparation. We selected monoclonal IgGs that were hepatocyte specific and localized them using both immunofluorescence on 0.5-micron sections of frozen liver and immunoperoxidase at the ultrastructural level. One antigen (HA 4) was localized predominantly to the bile canalicular surface, whereas three (CE 9, HA 21, and HA 116) were localized predominantly to the lateral and sinusoidal surfaces. One antigen (HA 16) was present in all three domains. Only one antigen (HA 116) could be detected in intracellular structures both in the periphery of the cell and in the Golgi region. The antigens were all integral membrane proteins as judged by their stability to alkaline extraction and solubility in detergents. The apparent molecular weights of the antigens were established by immunoprecipitation and/or immunoblotting. In a related study (Bartles, J.R., L.T. Braiterman, and A.L. Hubbard, 1985, J. Cell. Biol., 100:1126-1138), we present biochemical confirmation of the domain-specific localizations for two of the antigens, HA 4 and CE 9, and demonstrate their suitability as endogenous domain markers for monitoring the separation of bile canalicular and sinusoidal lateral membrane on sucrose density gradients.


1998 ◽  
Vol 143 (4) ◽  
pp. 957-971 ◽  
Author(s):  
Rytis Prekeris ◽  
Judith Klumperman ◽  
Yu A. Chen ◽  
Richard H. Scheller

Endocytosis-mediated recycling of plasma membrane is a critical vesicle trafficking step important in diverse biological processes. The membrane trafficking decisions and sorting events take place in a series of heterogeneous and highly dynamic organelles, the endosomes. Syntaxin 13, a recently discovered member of the syntaxin family, has been suggested to play a role in mediating endosomal trafficking. To better understand the function of syntaxin 13 we examined its intracellular distribution in nonpolarized cells. By confocal immunofluorescence and electron microscopy, syntaxin 13 is primarily found in tubular early and recycling endosomes, where it colocalizes with transferrin receptor. Additional labeling is also present in endosomal vacuoles, where it is often found in clathrin-coated membrane areas. Furthermore, anti-syntaxin 13 antibody inhibits transferrin receptor recycling in permeabilized PC12 cells. Immunoprecipitation of syntaxin 13 revealed that, in Triton X-100 extracts, syntaxin 13 is present in a complex(es) comprised of βSNAP, VAMP 2/3, and SNAP-25. This complex(es) binds exogenously added αSNAP and NSF and dissociates in the presence of ATP, but not ATPγS. These results support a role for syntaxin 13 in membrane fusion events during the recycling of plasma membrane proteins.


1980 ◽  
Vol 58 (10) ◽  
pp. 1156-1164 ◽  
Author(s):  
Paul C. Holland ◽  
George A. Cates ◽  
Byron S. Wenger ◽  
Barbara L. Raney

Plasma membranes were prepared from primary cell cultures of normal and genetically dystrophic chick embryonic pectoral muscle. These membranes were analyzed both by one-dimensional sodium dodecyl sulphate – polyacrylamide slab gel electrophoresis and by two-dimensional electrophoresis using isoelectric focusing in the first dimension. No marked and reproducible abnormalities could be detected in the synthesis, or accumulation, of plasma membrane proteins of dystrophic muscle cells maintained in culture for periods of up to 6 days. Analysis of the relative rates of protein turnover, analysis of fucose incorporation into plasma membrane proteins, and comparison of iodinated cell surface proteins also failed to reveal distinct abnormalities in plasma membranes derived from cultured dystrophic muscle cells. Although the results obtained do not rule out an early defect in plasma membrane protein biosynthesis during the development of dystrophic skeletal muscle in vivo, they do demonstrate that the synthesis and assembly of at least the major plasma membrane proteins occur normally during the initial phases of terminal differentiation of isolated dystrophic skeletal muscle cells in tissue culture.


Sign in / Sign up

Export Citation Format

Share Document