scholarly journals In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor

1989 ◽  
Vol 86 (5) ◽  
pp. 1539-1542 ◽  
Author(s):  
E. E. Farmer ◽  
G. Pearce ◽  
C. A. Ryan
Biochimie ◽  
1999 ◽  
Vol 81 (6) ◽  
pp. 655-661 ◽  
Author(s):  
Véronique Santoni ◽  
Patrick Doumas ◽  
David Rouquié ◽  
Monique Mansion ◽  
Thierry Rabilloud ◽  
...  

Author(s):  
Sophie Duban-Deweer ◽  
Johan Hachani ◽  
Barbara Deracinois ◽  
Romo Cecchelli ◽  
Christophe Flahaut ◽  
...  

Development ◽  
2014 ◽  
Vol 141 (15) ◽  
pp. 2924-2938 ◽  
Author(s):  
C. Luschnig ◽  
G. Vert

1996 ◽  
Vol 109 (7) ◽  
pp. 1667-1676 ◽  
Author(s):  
A. Mayer ◽  
I.E. Ivanov ◽  
D. Gravotta ◽  
M. Adesnik ◽  
D.D. Sabatini

An in vitro system to study the transport of plasma membrane proteins from the TGN to the basolateral plasma membrane of polarized MDCK cells has been developed in which purified cell fractions are combined and transport between them is studied under controlled conditions. In this system, a donor Golgi fraction derived from VSV or influenza virus-infected MDCK cells, in which 35S-labeled viral glycoproteins were allowed to accumulate in the TGN during a low temperature block, is incubated with purified immobilized basolateral plasma membranes that have their cytoplasmic face exposed and are obtained by shearing-lysis of MDCK monolayers grown on cytodex beads. Approximately 15–30% of the labeled glycoprotein molecules are transferred from the Golgi fraction to the acceptor plasma membranes and are recovered with the sedimentable (1 g) beads. Transport is temperature, energy and cytosol dependent, and is abolished by alkylation of SH groups and inhibited by the presence of GTP-gamma-S, which implicates GTP-binding proteins and the requirement for GTP hydrolysis in one or more stages of the transport process. Endo H-resistant glycoprotein molecules that had traversed the medial region of the Golgi apparatus are preferentially transported and their luminal domains become accessible to proteases, indicating that membrane fusion with the plasma membrane takes place in the in vitro system. Mild proteolysis of the donor or acceptor membranes abolishes transport, suggesting that protein molecules exposed on the surface of these membranes are involved in the formation and consumption of transport intermediates, possibly as addressing and docking proteins, respectively. Surprisingly, both VSV-G and influenza HA were transported with equal efficiencies to the basolateral acceptor membranes. However, low concentrations of a microtubular protein fraction preferentially inhibited the transport of HA, although this effect was not abolished by microtubule depolymerizing agents. This system shows great promise for elucidating the mechanisms that effect the proper sorting of plasma membrane proteins in the TGN and their subsequent targeting to the appropriate acceptor membrane.


1991 ◽  
Vol 95 (4) ◽  
pp. 1302-1305 ◽  
Author(s):  
Kanwarpal S. Dhugga ◽  
Peter M. Ray

1983 ◽  
Vol 210 (1) ◽  
pp. 37-47 ◽  
Author(s):  
B T Pan ◽  
R Blostein ◽  
R M Johnstone

Sheep reticulocyte-specific antiserum absorbed with mature sheep red cells has been used to isolate and identify reticulocyte-specific plasma-membrane proteins and to monitor their loss during incubation in vitro. Specific precipitation of labelled plasma-membrane proteins is obtained when detergent-solubilized extracts of 125I-labelled reticulocyte plasma membranes are incubated with this antiserum and Staphyloccus aureus, but not when mature-cell plasma membranes are treated similarly. During maturation of reticulocytes in vitro (up to 4 days at 37 degrees C), there is a marked decrease in the immunoprecipitable material. The anti-reticulocyte-specific antibodies have been identified as anti-(transferrin receptor) antibodies. By using these antibodies as a probe, the transferrin receptor has been shown to have a subunit molecular weight of 93 000. The data are consistent with reported molecular weights of this receptor and with the proposal that the receptor may exist as a dimer, since [125I]iodotyrosyl-peptide maps of the 93 000- and 186 000-mol.wt. components isolated are shown to be identical. Evidence is presented for the transmembrane nature of the receptor and for the presence of different binding sites for transferrin and these antibodies on the receptor.


Zygote ◽  
1996 ◽  
Vol 4 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Emily Wheeler ◽  
Trish Berger ◽  
Esmail Behboodi

SummaryThe experimental objective was to determine whether the capability of bovine oocyte plasma membrane to bind sperm changes during in vitro oocyte maturation and fertilisation. Binding was quantified by the intensity of tetramethylrhodamine isothiocyanate (TRITC) fluorescence at the periphery of oocytes following incubation with biotinylated sperm plasma membrane proteins and subsequent incubation with TRITC-avidin. Bovine oocytes were matured in vitro. Sample groups were removed after 0,6 and 22 h, or inseminated and further cultured for 24 or 48 h. Oocytes were denuded of cumulus cells and zona pellucida and co-incubated with 56 μg biotinylated bovine sperm plasma membrane protein for 45 min in 150 μl drops of saline-BSA. Controls were incubated for the same time period in the absence of sperm plasma membrane proteins. All oocytes were rinsed, incubated with TRITC-avidin and subsequently fixed and transferred to mounting medium. Oocytes were scanned with a confocal microscope and analysed using ImageQuant software. The binding of sperm plasma membrane was quantified by integrated fluorescent intensity in standardised ellipses spaced around the plasma membrane of the oocyte. Values are expressed as mean intensity units per 320 pixel ellipse. Binding of sperm plasma membrane continued to increase throughout in vitro oocyte maturation and fertilisation (9051, 24318 and 49953 for 0 and 22 h in vitro matured oocytes and fertilised oocytes, respectively; p = 0.0001). A dramatic decrease in sperm plasma membrane binding to the oocyte plasma membrane was observed in 2-cell embryos (mean intensity = 24477, p = 0.0001). The observed binding was primarily due to the binding of sperm plasma membrane proteins, as control oocytes incubated with TRITC- avidin only were barely visible (integrated fluorescence intensity values ranged from 8 to 3757).


Sign in / Sign up

Export Citation Format

Share Document