scholarly journals Agorins: major structural proteins of the plasma membrane skeleton of P815 tumor cells.

1986 ◽  
Vol 103 (2) ◽  
pp. 351-360 ◽  
Author(s):  
J R Apgar ◽  
M F Mescher

Plasma membranes of P815 mastocytoma cells contain a set of proteins that remain selectively insoluble upon extraction of the membranes with Triton X-100, and appear to form a membrane skeletal matrix independent of the filamentous cytoskeletal systems. EGTA treatment of the matrix was found to release approximately 25% of the protein as polypeptides of 70, 69, 38, and 36 kD, all of which appear to be peripheral components associated with the cytoplasmic face of the plasma membrane via divalent cation-dependent interactions. About 75% of the total matrix protein was recovered in the EGTA-insoluble fraction. Actin accounted for approximately 5% of the total protein in the EGTA-insoluble fraction. The rest was accounted for by two novel proteins of 20 and 40 kD which, despite their relatively low molecular weights, do not enter SDS PAGE gels. Together these proteins account for approximately 15% of the total plasma membrane protein, and are thus present in much higher amounts than any other characterized protein of nucleated cell plasma membranes. Based on the extensive associations of these proteins to form very large detergent-insoluble structures, we propose that they may be named agorin I, the 20-kD protein, and agorin II, the 40-kD protein, from the Greek agora meaning assembly. The amount and properties of these proteins and the appearance of the EGTA-insoluble material in thin-section electron micrographs indicate that the agorins are the major structural elements of the membrane matrix, and thus of the putative membrane skeleton.

1983 ◽  
Vol 210 (1) ◽  
pp. 37-47 ◽  
Author(s):  
B T Pan ◽  
R Blostein ◽  
R M Johnstone

Sheep reticulocyte-specific antiserum absorbed with mature sheep red cells has been used to isolate and identify reticulocyte-specific plasma-membrane proteins and to monitor their loss during incubation in vitro. Specific precipitation of labelled plasma-membrane proteins is obtained when detergent-solubilized extracts of 125I-labelled reticulocyte plasma membranes are incubated with this antiserum and Staphyloccus aureus, but not when mature-cell plasma membranes are treated similarly. During maturation of reticulocytes in vitro (up to 4 days at 37 degrees C), there is a marked decrease in the immunoprecipitable material. The anti-reticulocyte-specific antibodies have been identified as anti-(transferrin receptor) antibodies. By using these antibodies as a probe, the transferrin receptor has been shown to have a subunit molecular weight of 93 000. The data are consistent with reported molecular weights of this receptor and with the proposal that the receptor may exist as a dimer, since [125I]iodotyrosyl-peptide maps of the 93 000- and 186 000-mol.wt. components isolated are shown to be identical. Evidence is presented for the transmembrane nature of the receptor and for the presence of different binding sites for transferrin and these antibodies on the receptor.


1986 ◽  
Vol 239 (2) ◽  
pp. 301-310 ◽  
Author(s):  
W D Sweet ◽  
F Schroeder

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5′-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.


1976 ◽  
Vol 154 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J P Luzio ◽  
A C Newby ◽  
C N Hales

1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5′-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 μm-adrenaline.


1995 ◽  
Vol 73 (S1) ◽  
pp. 453-458 ◽  
Author(s):  
Hiroshi Otani ◽  
Keisuke Kohmoto ◽  
Motoichiro Kodama

There are now nine or more Alternaria pathogens that produce host-specific toxins, and the structures of most of the toxins have been elucidated. Alternaria host-specific toxins are classified in three groups in terms of the primary site action. ACT-, AF-, and AK-toxins have in common an epoxy-decatrienoic acid structure and exert their primary effect on the plasma membrane of susceptible cells. A rapid increase in electrolyte loss from tissues and invaginations in the plasma membranes are common effects of these toxins. The second group is represented by ACR(L)-toxin, which induces changes in mitochondria, including swelling, vesiculation of cristae, decrease in the electron density of the matrix, increase in the rate of NADH oxidation, and inhibition of malate oxidation. The third group consists of AM-toxin, which appears to exert an early effect on both chloroplasts and plasma membranes. AM-toxin induces vesiculation of grana lamellae, inhibition of CO2 fixation, invagination of plasma membranes, and electrolyte loss. The roles of host-specific toxins in pathogenesis are discussed. Key words: Alternaria, host-specific toxin, plasma membrane, mitochondrion, chloroplast.


2015 ◽  
Vol 89 (23) ◽  
pp. 11750-11760 ◽  
Author(s):  
Timothy K. Soh ◽  
Sean P. J. Whelan

ABSTRACTVesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV.IMPORTANCEAssembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a “late domain” that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.


2019 ◽  
Vol 116 (50) ◽  
pp. 25269-25277 ◽  
Author(s):  
Nairi Pezeshkian ◽  
Nicholas S. Groves ◽  
Schuyler B. van Engelenburg

The HIV-1 envelope glycoprotein (Env) is sparsely incorporated onto assembling virus particles on the host cell plasma membrane in order for the virus to balance infectivity and evade the immune response. Env becomes trapped in a nascent particle on encounter with the polymeric viral protein Gag, which forms a dense protein lattice on the inner leaflet of the plasma membrane. While Env incorporation efficiency is readily measured biochemically from released particles, very little is known about the spatiotemporal dynamics of Env trapping events. Herein, we demonstrate, via high-resolution single-molecule tracking, that retention of Env trimers within single virus assembly sites requires the Env cytoplasmic tail (CT) and the L12 residue in the matrix (MA) domain of Gag but does not require curvature of the viral lattice. We further demonstrate that Env trimers are confined to subviral regions of a budding Gag lattice, supporting a model where direct interactions and/or steric corralling between the Env-CT and a lattice of MA trimers promote Env trapping and infectious HIV-1 assembly.


1987 ◽  
Vol 241 (3) ◽  
pp. 801-807 ◽  
Author(s):  
R T Earl ◽  
E E Billett ◽  
I M Hunneyball ◽  
R J Mayer

Reconstituted Sendai-viral envelopes (RSVE) were produced by the method of Vainstein, Hershkovitz, Israel & Loyter [(1984) Biochim. Biophys. Acta 773, 181-188]. RSVE are fusogenic unilamellar vesicles containing two transmembrane glycoproteins: the HN (haemagglutinin-neuraminidase) protein and the F (fusion) factor. The fate of the viral proteins after fusion-mediated transplantation of RSVE into hepatoma (HTC) cell plasma membranes was studied to probe plasma-membrane protein degradation. Both protein species are degraded at similar, relatively slow, rates (t1/2 = 67 h) in HTC cells fused with RSVE in suspension. Even slower degradation rates for HN and F proteins (t1/2 = 93 h) were measured when RSVE were fused with HTC cells in monolayer. Lysosomal degradation of the transplanted viral proteins is strongly implicated by the finding that degradation of HN and F proteins is sensitive to inhibition by 10 mM-NH4Cl (81%) and by 50 micrograms of leupeptin/ml (70%).


1992 ◽  
Vol 47 (11-12) ◽  
pp. 929-931 ◽  
Author(s):  
Antonio del Castillo-Olivares ◽  
Javier Márquez ◽  
Ignacio Núñez de Castro ◽  
Miguel Angel Medina

Ehrlich cell plasma membrane vesicles have a ferricyanide reductase activity that shows two phases. These two phases were kinetically characterized. Evidence is presented for a differential effect of trypsin on both phases


2015 ◽  
Vol 89 (18) ◽  
pp. 9440-9453 ◽  
Author(s):  
Emmanuel Adu-Gyamfi ◽  
Kristen A. Johnson ◽  
Mark E. Fraser ◽  
Jordan L. Scott ◽  
Smita P. Soni ◽  
...  

ABSTRACTLipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles.IMPORTANCEThe lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry.


2009 ◽  
Vol 83 (20) ◽  
pp. 10374-10383 ◽  
Author(s):  
Masaharu Iwasaki ◽  
Makoto Takeda ◽  
Yuta Shirogane ◽  
Yuichiro Nakatsu ◽  
Takanori Nakamura ◽  
...  

ABSTRACT The genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction. In MV minigenome reporter gene assays, the M protein inhibited viral RNA synthesis only when it was able to interact with the N protein. The N protein colocalized with the M protein at the plasma membrane when the proteins were coexpressed in plasmid-transfected or MV-infected cells. In contrast, the N protein formed small dots in the perinuclear area when it was expressed without the M protein, or it was incapable of interacting with the M protein. Furthermore, a recombinant MV possessing a mutant N protein incapable of interacting with the M protein grew much less efficiently than the parental virus. Since the M protein has an intrinsic ability to associate with the plasma membrane, it may retain the ribonucleoprotein complex at the plasma membrane by binding to the N protein, thereby stopping viral RNA synthesis and promoting viral particle production. Consequently, our results indicate that the M protein regulates MV RNA synthesis and assembly via its interaction with the N protein.


Sign in / Sign up

Export Citation Format

Share Document