scholarly journals Defective processing of ribosomal precursor RNA in Saccharomyces cerevisiae

1984 ◽  
Vol 220 (2) ◽  
pp. 461-467 ◽  
Author(s):  
J A Mitlin ◽  
M Cannon

Saccharomyces cerevisiae (strain A224A) has an abnormal distribution of cytoplasmic ribosomal subunits when grown at 36 degrees C, with sucrose-gradient analysis of extracts revealing an apparent excess of material sedimenting at 60 S. This abnormality is not observed at either 23 degrees C or 30 degrees C. At 36 degrees C the defect(s) is expressed as a slowed conversion of 20 S ribosomal precursor RNA to mature 18 S rRNA, although the corresponding maturation of 27 S ribosomal precursor RNA to mature 25 S rRNA is normal. Studies on this yeast strain and on mutants derived from it may help to elucidate the role(s) of individual ribosomal components in controlling ribosome biogenesis in eukaryotes.

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1687-1699
Author(s):  
Jesús de la Cruz ◽  
Thierry Lacombe ◽  
Olivier Deloche ◽  
Patrick Linder ◽  
Dieter Kressler

Abstract Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele.


1991 ◽  
Vol 69 (1) ◽  
pp. 5-22 ◽  
Author(s):  
D. E. Larson ◽  
P. Zahradka ◽  
B. H. Sells

Ribosome biogenesis in eucaryotic cells involves the coordinated synthesis of four rRNA species, transcribed by RNA polymerase I (18S, 28S, 5.8S) and RNA polymerase III (5S), and approximately 80 ribosomal proteins translated from mRNAs synthesized by RNA polymerase II. Assembly of the ribosomal subunits in the nucleolus, the site of 45S rRNA precursor gene transcription, requires the movement of 5S rRNA and ribosomal proteins from the nucleoplasm and cytoplasm, respectively, to this structure. To integrate these events and ensure the balanced production of individual ribosomal components, different strategies have been developed by eucaryotic organisms in response to a variety of physiological changes. This review presents an overview of the mechanisms modulating the production of ribosomal precursor molecules and the rate of ribosome biogenesis in various biological systems.Key words: rRNA, ribosomal proteins, nucleolus, ribosome.


Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 655-682
Author(s):  
Ernest V Falke ◽  
Theodore R F Wright

ABSTRACT Thirteen X-linked, cold-sensitive lethal, female-sterile mutants of Drosophila melanogaster located at eight separate loci were screened for their ability to assemble ribosomes at the restrictive temperature of 17°. Females were labelled with 3H-uridine for either 2 or 20 hours at 17°. A mitochondria-free extract was prepared and analyzed by means of sucrose gradient centrifugation. Four of the mutants, l(1)TW-2 cs, l(1)HM16cs, l(1)HM23cs, and l(1)HM20cs, had a lower ratio of cpm in the 40S subunit to cpm in the 60S subunit (40S:60S ratio) than wild type with a 2-hour label. The same was true of a 20-hour label of l(1)TW-2cs, l(1)HM16cs, and l(1)HM23cs, which are allelic, resulted in a 40S:60S ratio higher than wild type. Four other cs mutants were found to have less drastic effects on ribosome assembly. The ribosomal subunits of mutants l(1)HM16sc and l(1)HM20cs sediment at the same rate as their wild-type counterparts. The same is true for the RNA in their ribosomal particles. Sucrose gradient analysis of ribosomes from cold-sensitive lethal, female-sterile mutants appears to be an effective method for finding mutants that affect ribosome assembly.


2006 ◽  
Vol 5 (3) ◽  
pp. 427-434 ◽  
Author(s):  
Ralph Bax ◽  
Harmjan R. Vos ◽  
Hendrik A. Raué ◽  
Jan C. Vos

ABSTRACT Sof1p is a trans-acting protein that is essential for biogenesis of the 40S ribosomal subunits in the yeast Saccharomyces cerevisiae. Because of its involvement in the early cleavage steps of precursor rRNA, its interaction with Nop1p and its ability to coprecipitate U3 snoRNA, Sof1p has so far been regarded as a protein that is specific to the U3 snoRNP. To determine whether a site exists within U3 snoRNA with which Sof1p directly or indirectly associates, we studied the ability of ProtA-tagged Sof1p to coimmunoprecipitate mutant versions of U3 snoRNA. None of the tested mutations had a significant effect on the recovery of mutant U3 from cell extracts. Further coimmunoprecipitation experiments, using cells that could be genetically depleted for either Sof1p or U3 snoRNA demonstrated that the two factors associate independently of each other with the 35S precursor RNA. Indeed, association between Sof1p and U3 snoRNA was abolished in cells in which 35S pre-rRNA transcription was blocked. Finally, we found that an overall reduction in the levels of box C/D snoRNPs by genetic depletion of the common Nop58p protein did not affect coprecipitation of 35S pre-rRNA by Sof1p. From these data, we conclude that Sof1p does not assemble into the 90S preribosome as part of the U3, or any other box C/D, snoRNP. The early and independently assembling trans-acting factor Rrp5p also proved to be dispensable for assembly of Sof1p.


1982 ◽  
Vol 93 (1) ◽  
pp. 217-222 ◽  
Author(s):  
J B Rattner ◽  
C Saunders ◽  
J R Davie ◽  
B A Hamkalo

The ultrastructural organization of yeast chromatin was examined in Miller spread preparations of samples prepared from spheroplasts or isolated nuclei of Saccharomyces cerevisiae. Micrographs from preparations dispersed in 1 mM Tris (pH 7.2) illustrate that the basic chromatin fiber in yeast exists in two ultrastructurally distinct conformations. The majority (up to 95%) of the chromatin displays a beaded nucleosomal organization, although adjacent nucleosomes are separated by internucleosomal linkers of variable lengths. Ribonucleoprotein (RNP) fibrils are only occasionally associated with chromatin displaying the conformation. The remaining 5-10% of the chromatin appears to be devoid of discrete nucleosomes and has a smooth contour with a fiber diameter of 30-40 A. Transcriptional units, including putative ribosomal precursor RNA genes, defined by the presence of nascent RNP fibrils are restricted to chromatin displaying this smooth morphology. Chromatin released from nuclei in the presence of 5 mM Mg++ displays higher-order chromatin fibers, 200-300 A in diameter, these fibers appear to be arranged in a manner than reflects the two forms of the basic chromatin fiber.


1990 ◽  
Vol 267 (3) ◽  
pp. 709-713 ◽  
Author(s):  
M Fernandez-Lobato ◽  
M Cannon ◽  
J A Mitlin ◽  
R C Mount ◽  
A Jimenez

Biochemical and genetic analyses have been carried out on Saccharomyces cerevisiae strains characterized in vivo as sensitive, low-level-resistant or high-level-resistant to trichothecene antibiotics. Levels of drug resistance in vitro were determined for each strain and for suitable diploids derived from them. Ribosome biogenesis was also studied in selected haploids. It is suggested that resistance in all cases results from a mutation in the gene encoding ribosomal protein L3. If this is indeed the situation, then different mutations in this same gene not only can cause low-level or high-level resistance to trichothecene antibiotics but also can affect the maturation of either 40 S or 60 S ribosomal subunits.


Sign in / Sign up

Export Citation Format

Share Document