scholarly journals The inhibition of ornithine transcarbamoylase from Escherichia coli W by phaseolotoxin

1984 ◽  
Vol 224 (2) ◽  
pp. 379-388 ◽  
Author(s):  
M D Templeton ◽  
P A Sullivan ◽  
M G Shepherd

The mechanism of inhibition of ornithine transcarbamoylase by the bacterial toxin phaseolotoxin [N-delta-(phosphosulphamyl)ornithylalanylhomoarginine] was investigated. Ornithine transcarbamoylase was purified by affinity chromatography from Escherichia coli W argR- by using N-delta-(phosphonoacetyl)ornithine as the ligand. Under steady-state conditions phaseolotoxin inhibition was reversible and exhibited mixed kinetics with respect to carbamoyl phosphate. The apparent Ki and apparent K'i were 0.2 microM and 10 microM respectively. Inhibition with respect to ornithine was noncompetitive, with an apparent Ki of 0.9 microM. These data are consistent with competitive binding of phaseolotoxin to the carbamoyl phosphate-binding site of the enzyme. The toxin also appears to be able to bind to the enzyme-carbamoyl phosphate complex, although, since K'i is 50 times greater than Ki, this event is kinetically much less significant. In the presence of phaseolotoxin ornithine transcarbamoylase exhibited a transient phase of activity before a steady state. This is consistent with low rates of association and dissociation for the toxin with enzyme and the enzyme-toxin complex. Rate constants of 2.5 × 10(4)M−1 × s−1 and 5 × 10(−3)s−1 were estimated for the association and dissociation constants respectively.

1985 ◽  
Vol 228 (2) ◽  
pp. 347-352 ◽  
Author(s):  
M D Templeton ◽  
R E Mitchell ◽  
P A Sullivan ◽  
M G Shepherd

Phaseolotoxin, a tripeptide inhibitor of ornithine transcarbamoylase, is a phytotoxin produced by Pseudomonas syringae pv. phaseolicola, the causal agent of halo-blight in beans. In vivo the toxin is cleaved to release N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine, the major toxic chemical species present in diseased leaf tissue. This paper reports on the interaction between N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine and ornithine transcarbamoylase. N delta-(N'-Sulpho-diaminophosphinyl)-L-ornithine was found to be a potent inactivator of the enzyme, in contrast with phaseolotoxin, which previously has been reported to inhibit the enzyme reversibly. Inactivation by N delta-(N'-[35S]sulpho-diaminophosphinyl)-L-ornithine resulted in the incorporation of 35S into ethanol-precipitated protein. The stoicheiometry of 35S incorporation was approximately 1 mol/mol of active sites. Inactivation was second-order and a rate constant of 10(6) M-1 X s-1 at 0 degree C in 50 mM-Tris/HCl, pH 9.0, was obtained. Carbamoyl phosphate, a substrate of ornithine transcarbamoylase, protected the enzyme from inactivation. A dissociation constant of 3 microM for the enzyme-carbamoyl phosphate complex was calculated. L-Ornithine, the second substrate for ornithine transcarbamoylase, protected the enzyme only at high concentrations. The results are consistent with N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine being a potent affinity label that binds via the carbamoyl phosphate-binding site of ornithine transcarbamoylase. Cleavage of phaseolotoxin to N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine in vivo appears to be an important function in the physiology of the disease.


1984 ◽  
Vol 221 (2) ◽  
pp. 281-287 ◽  
Author(s):  
R J Yon

The kinetic effects of the end-product inhibitor UMP on aspartate transcarbamoylase (EC 2.1.3.2) purified to homogeneity from wheat germ were studied. In agreement with an earlier study of the relatively crude enzyme [Yon (1972) Biochem. J. 128, 311-320], the half-saturating concentrations of UMP and of the first substrate, carbamoyl phosphate (but not of the second, L-aspartate), were found to be strongly interdependent. However, the kinetic behaviour of the pure enzyme differed from that of the crude enzyme in several important respects, namely: (a) the apparent affinity for UMP was lower with the pure enzyme; (b) sigmoidicity was absent from plots of initial rate versus carbamoyl phosphate concentration, each at a fixed UMP concentration; (c) sigmoidicity was greatly exaggerated in plots of initial rate versus UMP concentration, each at a fixed carbamoyl phosphate concentration, owing to the occurrence of a slight but definite maximum in each plot at low UMP concentration; (d) there was a relative increase in this maximum in the presence of N-phosphonacetyl-L-aspartate, an inhibitor competitive with carbamoyl phosphate. It is shown that a modified two-conformation concerted-transition model can be used to account for most of these features of the pure enzyme. The model treats carbamoyl phosphate and UMP as antagonistic allosteric ligands binding to alternative conformational states [Monod, Wyman & Changeux (1965) J. Mol. Biol. 12, 88-118], carbamoyl phosphate binding non-exclusively (dissociation constants 20 microM and 85 microM respectively) and UMP binding exclusively (dissociation constant 2.5 microM). The model postulates further that the conformation with lower affinity for carbamoyl phosphate has the higher value of kcat., and that it binds UMP in competition with carbamoyl phosphate. Parameters giving the best fit of experimental data to this model were found by a non-linear least-squares search procedure.


1965 ◽  
Vol 14 (1) ◽  
pp. 23-36 ◽  
Author(s):  
A. Piérard ◽  
N. Glansdorff ◽  
M. Mergeay ◽  
J.M. Wiame

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Elena Forte ◽  
Sergey A. Siletsky ◽  
Vitaliy B. Borisov

Interaction of two redox enzymes of Escherichia coli, cytochrome bo3 and cytochrome bd-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome bo3 is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH4)2SO4. In contrast, the activity of cytochrome bd-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH4)2SO4. In both cases, the effector molecule is apparently not NH4+ but NH3. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants Kdapp of 24.3 ± 2.7 mM (NH4)2SO4 (4.9 ± 0.5 mM NH3) for the Soret region in cytochrome bo3, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH4)2SO4 (7.2 ± 1.4 and 4.9 ± 2.5 mM NH3) for the Soret and visible regions, respectively, in cytochrome bd-I. Consistently, addition of (NH4)2SO4 to cells of the E. coli mutant containing cytochrome bd-I as the only terminal oxidase at pH 8.3 accelerates the O2 consumption rate, the highest one (140%) being at 27 mM (NH4)2SO4. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by E. coli.


Sign in / Sign up

Export Citation Format

Share Document