scholarly journals Prevention of neonatal hyperbilirubinaemia in non-human primates by Zn-protoporphyrin

1985 ◽  
Vol 226 (1) ◽  
pp. 51-57 ◽  
Author(s):  
M K Qato ◽  
M D Maines

Non-human primates were used as a model of human neonatal hyperbilirubinaemia and its chemotherapeutic suppression. High levels of haem oxygenase activity were detected in the liver and the spleen of neonatal rhesus (Macaca mulatta) and cynomolgus (Macaca irus) monkeys. When 1-day-old neonatal animals were given a single injection of Zn-protoporphyrin (40 mumol/kg, subcutaneously), serum bilirubin levels declined to nearly normal adult levels within 24 h and remained suppressed throughout the postnatal period (12 days). This treatment inhibited the activities of haem oxygenase and biliverdin reductase in the liver and the spleen, without affecting that of the brain. Zn-protoporphyrin treatment did not alter the activity of brain biliverdin reductase or increase brain bilirubin levels. The biological disposition of Zn-protoporphyrin was examined by measuring the biliary and urinary excretion of the metalloporphyrin complex, as well as its uptake and deposition in blood cells and tissues. Biliary excretion of the metalloporphyrin was minimal (0.12% over a 28 h period), and no evidence was detected for the urinary excretion of Zn-protoporphyrin. However, the concentration of metalloporphyrin in erythrocytes increased over the duration of the experiment (11 days) to such an extent that 46% of the administered compound was taken up by the cells. It appeared that the molecular basis for the sustained suppression of haem oxygenase activity and bilirubin production by Zn-protoporphyrin involved the release of the metalloporphyrin in the normal process of the degradation of fetal erythrocytes. The scope of the biological activity of Zn-protoporphyrin to alter haem-dependent processes appeared limited in nature, insofar as the microsomal contents of cytochrome P-450 and b5, as well as the aniline hydroxylase, were similar to those of the control animals. Also, the concentration of glutathione in the liver was unchanged. These findings suggest the potential usefulness of Zn-protoporphyrin in experimental and perhaps clinical conditions in which hyperbilirubinaemia occurs.

Author(s):  
T. O. PHILIPPOVA ◽  
B. N. GALKIN ◽  
N. YA. GOLOVENKO ◽  
Z. I. ZHILINA ◽  
S. V. VODZINSKII

Tin complexes of meso-substituted synthetic porphyrins, namely Sn 4+-meso-tetraphenyl- porphyrin ( Sn - TPP ) and Sn 4+-meso-tetrakis(N-methyl-3-pyridyl)porphyrin tetratosylate ( Sn - TMe -3- PyP ), efficiently decrease the serum bilirubin level when injected subcutaneously at a dose of 100 μM kg−1 body weight into mice. These compounds are active during hyperbilirubinemia, induced by phenylhydrazine, hemin and tetrachloromethane, and also during autoimmune hemolytic anemia. In the latter case a decrease in serum bilirubin content was observed, as well as a decrease in the amount of blood reticulocytes which reflects a milder course of the disease. The Sn complexes under study induce, in vivo, cytochrome P-450, inhibit microsomal heme oxygenase and decrease the intensity of lipid peroxidation. At the same time, in vitro the hepatic and splenic heme oxygenase activity is blocked only when a 0.1 μM concentration of Sn - TMe -3- PyP or Sn -protoporphyrin IX is added to the incubation mixture. Sn - TPP does not affect the activity of this enzyme in vitro.


1988 ◽  
Vol 250 (1) ◽  
pp. 189-196 ◽  
Author(s):  
B C Lincoln ◽  
J F Healey ◽  
H L Bonkovsky

We studied drug- and metal-mediated increases in activity of haem oxygenase, the rate-controlling enzyme for haem breakdown, in chick-embryo hepatocytes in ovo and in primary culture. Phenobarbitone and phenobarbitone-like drugs (glutethimide, mephenytoin), which are known to increase concentrations of an isoform of cytochrome P-450 in chick-embryo hepatocytes, were found to increase activities of haem oxygenase as well. In contrast, 20-methylcholanthrene, which increases the concentration of a different isoform of cytochrome P-450, had no effect on activity of haem oxygenase. Inhibitors of haem synthesis, 4,6-dioxoheptanoic acid or desferrioxamine, prevented drug-mediated induction of both cytochrome P-450 and haem oxygenase in embryo hepatocytes in ovo or in culture. Addition of haem restored induction of both enzymes. These results are interpreted to indicate that phenobarbitone and its congeners induce haem oxygenase by increasing hepatic haem formation. In contrast, increases in haem oxygenase activity by metals such as cobalt, cadmium and iron were not dependent on increased haem synthesis and were not inhibited by 4,6-dioxoheptanoic acid. We conclude that (1) induction of hepatic haem oxygenase activity by phenobarbitone-type drugs is due to increased haem formation, and (2) induction of haem oxygenase by drugs and metals occurs by different mechanisms.


1977 ◽  
Vol 168 (1) ◽  
pp. 105-111 ◽  
Author(s):  
R F Burk ◽  
M A Correia

1. Hepatic microsomal cytochrome P-450 concentrations are lower in selenium-deficient rats treated with phenobarbital for 4 days than in similarly treated control rats. 2. No defect in haem synthesis was found on the basis of measurements of delta-aminolaevulinate synthase (EC 2.3.1.37), delta-aminolaevulinate dehydratase (EC 4.2.1.24) and ferrochelatase (EC 4.99.1.1) activities, and urinary excretion of delta-aminolaevulinate, porphobilinogen, uroporphyrin and coproporphyrin. 3. No defect in apo-(cytochrome P-450) separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. An increase in haem catabolism was found. An 8-fold increase in hepatic microsomal haem oxygenase (EC 1.14.99.3) activity occurred in selenium-deficient rats after phenobarbital treatment, compared with a less than 2-fold increase in control rats. Also excretion of 14CO in the breath after administration of delta-amino[5-14C]laevulinate was greater by phenobarbital-treated selenium-deficient rats than by similarly treated controls. 5. These studies demonstrate that the defective induction of cytochrome P-450 by phenobarbital in selenium-deficient rats is accompanied by increased haem catabolism. This could be due to increased breakdown of cytochrome P-450 or to catabolism of haem before it attaches to the apo-cytochrome. The role of selenium in stabilizing cytochrome P-450 and/or in protecting haem from breakdown remains to be determined.


1988 ◽  
Vol 167 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
T R Sisson ◽  
G S Drummond ◽  
D Samonte ◽  
R Calabio ◽  
A Kappas

Administration of Sn-protoporphyrin to Gunn rats that are characterized by a genetically determined absence of UDP-glucuronyl transferase activity for bilirubin, 24-30 h after birth, prevented the marked increase in serum bilirubin concentration that occurs in these animals in the postnatal period. A second administration of Sn-protoporphyrin at day 6 maintained serum bilirubin levels in the neonates at the initial level for an additional 6 d. In contrast, in untreated Gunn neonates, serum bilirubin levels increased substantially as expected during the immediate 2-wk period after birth. Studies in adult Gunn rats demonstrated that Sn-protoporphyrin administration diminished biliary bilirubin output, decreased tissue heme oxygenase activity, and did not alter hepatic cytochrome P450 levels. These findings raise the possibility that Sn-protoporphyrin may prove clinically useful in maintaining low levels of serum bilirubin in congenitally jaundiced individuals, such as patients with the Crigler-Najjar syndrome.


1977 ◽  
Vol 166 (2) ◽  
pp. 301-304 ◽  
Author(s):  
D M Bissell ◽  
L E Hammaker

Endotoxin was administered to rats at a dose shown previously to stimulate hepatic haem oxygenase activity and to block induction of delta-aminolaevulinate synthase, apparently by causing redistribution of haem from cytochrome P-450 to a regulatory haem pool in the liver. Within 5h of the administration of endotoxin (at a time when the effect of the compound on cytochrome P-450 is maximal) the relative saturation of tryptophan pyrrolase with intrinsic haem rose, from a basal value of 50% to 90%, indicating that ‘free’ haem had become available. Concurrently, the activity of delta-aminolaevulinate synthase was decreased to 25% of its basal value. Haem oxygenase reached peak activity 13h after endotoxin administration. These findings provide new evidence for the existence of an ‘unassigned’ hepatic haem fraction, which exchanges with cytochrome P-450 haem and regulates these three enzyme functions.


1984 ◽  
Vol 217 (2) ◽  
pp. 409-417 ◽  
Author(s):  
M D Maines ◽  
J C Veltman

Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.


1981 ◽  
Vol 200 (1) ◽  
pp. 35-42 ◽  
Author(s):  
N G Ibrahim ◽  
J C Nelson ◽  
R D Levere

The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.


1975 ◽  
Vol 141 (6) ◽  
pp. 1400-1410 ◽  
Author(s):  
M D Maines ◽  
A Kappas

The comparative development patterns of heme oxidation andof cytochrome P-450 dependent drug oxidation in rat liver were examined. High levels of heme oxygenase activity were present in whole embryo preparations at day 13 of gestation. At birth this enzyme activity in liver was approximately equal to that of normal adult liver. In the immediate postnatal period the rate of hepatic heme oxidation increased sharply, reaching levels 3-5 times normal during the first week postpartum. Thereafter, this enzyme activity progressively decreased and returned to normal adult levels by the 28th postpartum day. The development of microsomal heme oxidation and of P-450 dependent drug oxidation exhibited reciprocal patterns, with the latter being at low levels of activity during the immediate postnatal period and reaching adult activity only 4 or more wk after birth. Cobalt injected into pregnant animals or in to nursing mothers did not induce heme oxygenase in the fetus or suckling neonate. However, when treated directly with the metal, 4-day old neonates exhibited a small induction response of this enzyme; and the inducibility of heme oxygenase increased gradually to fully adult levels by the end of the 4th postpartum week. Cobalt at all postnatal developmental stages was capable of diminishing hepatic contents of total microsomal heme and P-450; however this effect of the metal was small in the immediate period after birth and increased progressively with maturation. These findings demonstrate that the patterns of development of hepatic capacity for carrying out the oxidation of heme and the P-450 dependent oxidation of drugs are different and thus provide further evidence that these microsomal enzyme systems are distinct from each other and under separate regulatory mechanisms. The degree of induction response for hepatic heme oxygenase evoked by the trace metal, cobalt, was also shown to have developmental determinants as did the susceptibility of hepatic cytochrome P-450 to degradation by this metal. The very high levels of hepatic heme oxygenase activity which characterize neonates during the first week of life indicate that over-production of bilirubin contributes significantly to the mechanism of neonatal jaundice.


1979 ◽  
Vol 184 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Philip S. Guzelian ◽  
Robert W. Swisher

Degradation of intrinsic hepatic [14C]haem was analysed as 14CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-14C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [14C]haem (largely cytochrome P-450 haem), but little 14CO formation. No additional 14CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [14C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl2 or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [14C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of 14CO and bilirubin, although these catabolites reflected only 18% of the degraded [14C]haem. This value was increased to 100% by addition of MnCl2, which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [14C]haem was decreased and haem oxygenase activity was unchanged; however, 14CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [14C]haem and 14CO excretion, one may infer that an important fraction of hepatic [14C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.


Sign in / Sign up

Export Citation Format

Share Document