scholarly journals Kinetic studies with the low-Km aldehyde reductase from ox brain

1985 ◽  
Vol 227 (2) ◽  
pp. 621-627 ◽  
Author(s):  
C M Ryle ◽  
K F Tipton

Initial-rate studies of the low-Km aldehyde reductase-catalysed reduction of pyridine-3-aldehyde by NADPH gave families of parallel double-reciprocal plots, consistent with a double-displacement mechanism being obeyed. Studies on the variation of the initial velocity with the concentration of a mixture of the two substrates were also consistent with a double-displacement mechanism. In contrast, the initial-rate data indicated that a sequential mechanism was followed when NADH was used as the coenzyme. Product-inhibition studies, however, indicated that a compulsory-order mechanism was followed in which NADPH bound before pyridine-3-aldehyde with a ternary complex being formed and the release of pyrid-3-ylcarbinol before NADP+. The apparently parallel double-reciprocal plots obtained in the initial-rate studies with NADPH and pyridine-3-aldehyde were thus attributed to the apparent dissociation constant for the binary complex between the enzyme and coenzyme being finite but very low.

1981 ◽  
Vol 193 (2) ◽  
pp. 485-492 ◽  
Author(s):  
F F Morpeth ◽  
F M Dickinson

Initial-rate measurements were made of the oxidations of pyridine-3-methanol and glycerol by NADP+ and of the reduction of the corresponding aldehydes by NADPH catalysed by pig kidney aldehyde reductase. In addition, a brief survey of the specificity of the enzyme towards aldehyde substrates and its sensitivity to the inhibitors ethacrynic acid, sodium barbitone and warfarin was made. The detailed kinetic work indicates a compulsory mechanism for aldehyde reduction, with NADPH binding before aldehyde. For alcohol oxidation, however, it is necessary to postulate the formation of kinetically significant amounts of binary complexes of the type enzyme-alcohol to explain the results. Thus, for alcohol oxidation random-order addition of substrates may occur. Inhibition studies of the kinetics of aldehyde reduction in the presence of the corresponding alcohol product provide further evidence for the existence of enzyme-alcohol complexes. Finally, detailed kinetic studies were made of the inhibition of pyridine-3-aldehyde reduction by sodium barbitone. The mechanism of the inhibition is discussed.


1972 ◽  
Vol 50 (5) ◽  
pp. 490-500 ◽  
Author(s):  
Samuel Y. Chu ◽  
J. Frank Henderson

Initial velocity and product inhibition studies of phosphoribosyl-formylglycineamidine synthetase indicate that the reaction involves a fully ping pong mechanism in which glutamine binds to the free enzyme and glutamate is released before the addition of ATP. ADP is released, and phosphoribosyl-formylglycineamide then binds; the liberation of Pi is rapid, and phosphoribosyl-formylglycineamidine is the last product released from the enzyme. The Km values for glutamine, ATP, and phosphoribosyl-formylglycineamide are 1.1 × 10−4 M, 1.5 × 10−3 M, and 1.1 × 10−4 M, respectively. The Km value for ammonium chloride is 7.5 × 10−3 M, and the ratio of Vmax values with ammonium chloride and glutamine is 1/40. The inhibition constants for FGAM and Pi were calculated to be 1.3 × 10−4 M and 6.45 × 10−3 M, respectively.


1970 ◽  
Vol 48 (5) ◽  
pp. 594-603 ◽  
Author(s):  
Ronald M. Lyric ◽  
Isamu Suzuki

Kinetic studies were carried out on three enzymes purified from Thiobacillus thioparus: sulfite: cytochrome c oxidoreductase, thiosulfate-oxidizing enzyme, and adenosine-5′-phosphosulfate reductase. From the initial velocity and product inhibition studies a tentative kinetic mechanism was proposed for each enzyme reaction.


1966 ◽  
Vol 100 (3) ◽  
pp. 739-744 ◽  
Author(s):  
CJ Toews

Rat skeletal-muscle hexokinase was partially purified by ammonium sulphate fractionation and gel filtration. The mechanism of the skeletal-muscle hexokinase was studied kinetically by initial-velocity analysis and product inhibition. Glucose 6-phosphate was a non-competitive inhibitor of glucose and ATP. ADP was a non-competitive inhibitor of glucose and a competitive inhibitor of ATP. The data on product inhibition and initial-velocity analysis of skeletal-muscle hexokinase support an ordered sequential mechanism (ordered Bi Bi) where the addition of substrates and release of products is in the order: ATP, glucose, glucose 6-phosphate and ADP.


1991 ◽  
Vol 278 (3) ◽  
pp. 835-841 ◽  
Author(s):  
L J Askonas ◽  
J W Ricigliano ◽  
T M Penning

Rat liver 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) (EC 1.1.1.50) is an NAD(P)(+)-dependent oxidoreductase that is potently inhibited at its active site by non-steroidal anti-inflammatory drugs (NSAIDs). Initial-velocity and product-inhibition studies performed in either direction at pH 7.0 are consistent with a sequential ordered Bi Bi mechanism in which pyridine nucleotide binds first and leaves last. This mechanism is supported by fluorescence titrations of the E-NADH complex, and by the failure to detect the binding of either [3H]androsterone or [3H]androstanedione to free enzyme by equilibrium dialysis. Dead-end inhibition studies with NSAIDs also support this mechanism. Initial-velocity studies with indomethacin show that this drug is an uncompetitive inhibitor against NAD+, but a potent competitive inhibitor against androsterone, indicating the ordered formation of an E.NAD+.indomethacin complex. Calculation of the individual rate constants reveals that the binding and release of pyridine nucleotide is rate-limiting and that isomerization of the central complex is favoured in the forward direction. Equilibrium dialysis experiments with [14C]indomethacin reveal the presence of two abortive NSAID complexes, a high-affinity ternary complex corresponding to E.NAD+.indomethacin (Kd = 1-2 microM for indomethacin) and a low-affinity binary complex corresponding to E.indomethacin (Kd = 22 microM for indomethacin). Since indomethacin has a low affinity for free enzyme, the formation of this abortive binary complex does not complicate kinetic measurements which are made in the presence of NAD+, but may contribute to the inhibition of the enzyme by NSAIDs. Using either pro-R-[4-3H]NADH or pro-S-[4-3H]NADH as cofactor, radiolabelled androsterone was formed only when the pro-R-[4-3H]NADH was used, confirming that purified 3 alpha-HSD is a Class A dehydrogenase.


1982 ◽  
Vol 205 (2) ◽  
pp. 381-388 ◽  
Author(s):  
Ann K. Daly ◽  
Timothy J. Mantle

The steady-state kinetics of the major form of ox kidney aldehyde reductase with d-glucuronic acid have been determined at pH7. Initial rate and product inhibition studies performed in both directions are consistent with a Di-Iso Ordered Bi Bi mechanism. The mechanism of inhibition by sodium valproate and benzoic acid is shown to involve flux through an alternative pathway.


1986 ◽  
Vol 233 (3) ◽  
pp. 669-676 ◽  
Author(s):  
W L Gitomer ◽  
K F Tipton

Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.


1994 ◽  
Vol 297 (2) ◽  
pp. 327-333 ◽  
Author(s):  
Y S Kim ◽  
S W Kang

Malonyl-CoA synthetase catalyses the formation of malonyl-CoA directly from malonate and CoA with hydrolysis of ATP into AMP and PP1. The catalytic mechanism of malonyl-CoA synthetase from Bradyrhizobium japonicum was investigated by steady-state kinetics. Initial-velocity studies and the product-inhibition studies with AMP and PPi strongly suggested ordered Bi Uni Uni Bi Ping Pong Ter Ter system as the most probable steady-state kinetic mechanism of malonyl-CoA synthetase. Michaelis constants were 61 microM, 260 microM and 42 microM for ATP, malonate and CoA respectively, and the value for Vmax, was 11.2 microM/min. The t.l.c. analysis of the 32P-labelled products in a reaction mixture containing [gamma-32P]ATP in the absence of CoA showed that PPi was produced after the sequential addition of ATP and malonate. Formation of malonyl-AMP, suggested as an intermediate in the kinetically deduced mechanism, was confirmed by the analysis of 31P-n.m.r. spectra of an AMP product isolated from the 18O-transfer experiment using [18O]malonate. The 31P-n.m.r. signal of the AMP product appeared at 0.024 p.p.m. apart from that of [16O4]AMP, indicating that one atom of 18O transferred from [18O]malonate to AMP through the formation of malonyl-AMP. Formation of malonyl-AMP was also confirmed through the t.l.c. analysis of reaction mixture containing [alpha-32P]ATP. These results strongly support the ordered Bi Uni Uni Bi Pin Pong Ter Ter mechanism deduced from initial-velocity and product-inhibition studies.


1986 ◽  
Vol 234 (2) ◽  
pp. 317-323 ◽  
Author(s):  
H G Nimmo

The inhibition of Escherichia coli isocitrate dehydrogenase by glyoxylate and oxaloacetate was examined. The shapes of the progress curves in the presence of the inhibitors depended on the order of addition of the assay components. When isocitrate dehydrogenase or NADP+ was added last, the rate slowly decreased until a new, inhibited, steady state was obtained. When isocitrate was added last, the initial rate was almost zero, but the rate increased slowly until the same steady-state value was obtained. Glyoxylate and oxaloacetate gave competitive inhibition against isocitrate and uncompetitive inhibition against NADP+. Product-inhibition studies showed that isocitrate dehydrogenase obeys a compulsory-order mechanism, with coenzyme binding first. Glyoxylate and oxaloacetate bind to and dissociate from isocitrate dehydrogenase slowly. These observations can account for the shapes of the progress curves observed in the presence of the inhibitors. Condensation of glyoxylate and oxaloacetate produced an extremely potent inhibitor of isocitrate dehydrogenase. Analysis of the reaction by h.p.l.c. showed that this correlated with the formation of oxalomalate. This compound decomposed spontaneously in assay mixtures, giving 4-hydroxy-2-oxoglutarate, which was a much less potent inhibitor of the enzyme. Oxalomalate inhibited isocitrate dehydrogenase competitively with respect to isocitrate and was a very poor substrate for the enzyme. The data suggest that the inhibition of isocitrate dehydrogenase by glyoxylate and oxaloacetate is not physiologically significant.


1983 ◽  
Vol 215 (3) ◽  
pp. 669-676 ◽  
Author(s):  
R L Pajula

A kinetic analysis including initial-velocity and product-inhibition studies were performed with spermine synthase purified from bovine brain. The enzyme activity was assayed in the presence of 5′-methylthioadenosine phosphorylase as an auxiliary enzyme to prevent the accumulation of the inhibitory product, 5′-methylthioadenosine, and thus to obtain linearity of the reaction with time. Initial-velocity studies gave intersecting or converging linear double-reciprocal plots. No substrate inhibition by decarboxylated S-adenosylmethionine was observed at concentrations up to 0.4 mM. Apparent Michaelis constants were 60 microM for spermidine and 0.1 microM for decarboxylated S-adenosylmethionine. Spermine was a competitive product inhibitor with respect to decarboxylated S-adenosylmethionine, but a mixed one with respect to the other substrate, spermidine. 5′-Methylthioadenosine showed a mixed inhibition with both substrates, predominantly competitive with respect to decarboxylated S-adenosylmethionine and predominantly uncompetitive with respect to spermidine. The observed kinetic and inhibition patterns are consistent with a compulsory-order mechanism, where both substrates add to the enzyme before products can be released.


Sign in / Sign up

Export Citation Format

Share Document