scholarly journals Effect of proteolytic cleavage on functional properties of muscarinic acetylcholine receptors in rat pancreatic and parotid acinar cells

1985 ◽  
Vol 231 (3) ◽  
pp. 617-622 ◽  
Author(s):  
S R Hootman ◽  
T M Picado-Leonard

Muscarinic acetylcholine receptors in isolated rat pancreatic acinar cells have an apparent Mr of 88 000, which could be decreased to 46 000 by papain, as deduced by covalent binding of the specific alkylating agent [3H]propylbenzilylcholine mustard. Muscarinic receptors on papain-treated acinar cells retained the antagonist-binding site and both high- and low-affinity binding sites for the cholinergic agonist carbachol. Similar results were observed in studies with rat parotid acinar cells, although the receptors in both control and papain-treated cells were each 10 000-15 000 Da smaller than in pancreas. Additionally, muscarinic receptors in papain-treated pancreatic acinar cells retained the ability to mediate carbachol stimulation of digestive-enzyme secretion. These results demonstrate that the characteristic binding properties of muscarinic receptors for both agonists and antagonists as well as their ability to translate agonist occupancy into a physiological response are not altered by proteolytic cleavage.

1992 ◽  
Vol 12 (4) ◽  
pp. 562-570 ◽  
Author(s):  
Hans W. Müller-Gärtner ◽  
Alan A. Wilson ◽  
Robert F. Dannals ◽  
Henry N. Wagner ◽  
J. James Frost

A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7–12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain.


2005 ◽  
Vol 289 (5) ◽  
pp. C1209-C1219 ◽  
Author(s):  
Ying Chen ◽  
Jennifer D. Warner ◽  
David I. Yule ◽  
David R. Giovannucci

Exocrine cells of the digestive system are specialized to secrete protein and fluid in response to neuronal and/or hormonal input. Although morphologically similar, parotid and pancreatic acinar cells exhibit important functional divergence in Ca2+ signaling properties. To address whether there are fundamental differences in exocytotic release of digestive enzyme from exocrine cells of salivary gland versus pancreas, we applied electrophysiological and optical methods to investigate spatial and temporal characteristics of zymogen-containing secretory granule fusion at the single-acinar cell level by direct or agonist-induced Ca2+ and cAMP elevation. Temporally resolved membrane capacitance measurements revealed that two apparent phases of exocytosis were induced by Ca2+ elevation: a rapidly activated initial phase that could not be resolved as individual fusion events and a second phase that was activated after a delay, increased in a staircaselike fashion, was augmented by cAMP elevation, and likely reflected both sequential compound and multivesicular fusion of zymogen-containing granules. Optical measurements of exocytosis with time-differential imaging analysis revealed that zymogen granule fusion was induced after a minimum delay of ∼200 ms, occurred initially at apical and basolateral borders of acinar cells, and under strong stimulation proceeded from apical pole to deeper regions of the cell interior. Zymogen granule fusions appeared to coordinate subsequent fusions and produced persistent structures that generally lasted several minutes. In addition, parotid gland slices were used to assess secretory dynamics in a more physiological context. Parotid acinar cells were shown to exhibit both similar and divergent properties compared with the better-studied pancreatic acinar cell regarding spatial organization and kinetics of exocytotic fusion of zymogen granules.


Sign in / Sign up

Export Citation Format

Share Document