scholarly journals The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum

1986 ◽  
Vol 235 (2) ◽  
pp. 491-498 ◽  
Author(s):  
P Thiyagarajah ◽  
S C Lim

A membrane fraction enriched in endoplasmic reticulum was prepared from rat parotid glands by using sucrose-gradient centrifugation. The fraction showed a 10-fold increase in specific activity of NADPH: cytochrome c reductase activity over that of tissue homogenates and minimal contamination with plasma membranes or mitochondria. The endoplasmic reticulum fraction possessed both Mg2+ -stimulated ATPase as well as Ca2+, Mg2+-ATPase [(Ca2+ + Mg2+)-stimulated ATPase]activity. The Ca2+, Mg2+-ATPase required 2-5 mM-Mg2+ for optimal activity and was stimulated by submicromolar concentrations of free Ca2+. The Km for free Ca2+ was 0.55 microM and the average Vmax. was 60 nmol/min per mg of protein. The Km for ATP was 0.11 mM. Other nucleotides, such as GTP, CTP or ADP, could not substitute for ATP in supporting the Ca2+-activated nucleotidase activity. Increasing the K+ concentration from 0 to 100 mM caused a 2-fold activation of the Ca2+, Mg2+-ATPase. Trifluoperazine, W7 [N-(6-aminohexyl)-5-chloronaphthalene-1-sulphonamide] and vanadate inhibited the enzyme. The concentration of trifluoperazine and vanadate required for 50% inhibition of the ATPase were 52 microM and 28 microM respectively. Calmodulin, cyclic AMP, cyclic AMP-dependent protein kinase and inositol 1,4,5-trisphosphate had no effect on the ATPase. The properties of the Ca2+, Mg2+ -ATPase were distinct from those of the Mg2+-ATPase, but comparable with those reported for the parotid endoplasmic-reticulum Ca2+-transport system [Kanagasuntheram & Teo (1982) Biochem. J. 208, 789-794]. The results suggest that the Ca2+, Mg2+-ATPase is responsible for driving the ATP-dependent Ca2+ accumulation by this membrane.

1984 ◽  
Vol 219 (1) ◽  
pp. 301-308 ◽  
Author(s):  
A A Davies ◽  
N M Wigglesworth ◽  
D Allan ◽  
R J Owens ◽  
M J Crumpton

Purified preparations of lymphocyte plasma membrane were extracted exhaustively with Nonidet P-40 in Dulbecco's phosphate-buffered saline medium. The insoluble fraction, as defined by sedimentation at 10(6) g-min, contained about 10% of the membrane protein as well as cholesterol and phospholipid. The lipid/protein ratio, cholesterol/phospholipid ratio and sphingomyelin content were increased in the residue. Density-gradient centrifugation suggested that the lipid and protein form a common entity. As judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Nonidet P-40-insoluble fractions of the plasma membranes of human B lymphoblastoid cells and pig mesenteric lymph-node lymphocytes possessed similar qualitative polypeptide compositions but differed quantitatively. Both residues comprised major polypeptides of Mr 28 000, 33 000, 45 000 and 68 000, together with a prominent band of Mr 120 000 in the human and of Mr 200 000 in the pig. The polypeptides of Mr 28 000, 33 000, 68 000 and 120 000 were probably located exclusively in the Nonidet P-40-insoluble residue, which also possessed a 4-fold increase in 5′-nucleotidase specific activity. The results indicate that a reproducible fraction of lymphocyte plasma membrane is insoluble in non-ionic detergents and that this fraction possesses a unique polypeptide composition. By analogy with similar studies with erythrocyte ghosts, it appears likely that the polypeptides are located on the plasma membrane's cytoplasmic face.


1987 ◽  
Vol 246 (2) ◽  
pp. 387-391 ◽  
Author(s):  
M G Humphreys-Beher ◽  
C A Schneyer

Maintenance of rats for 2 weeks on a diet consisting of 50% inert cellulose and 50% laboratory chow resulted in hypertrophy of the parotid gland and a 4-fold increase in total membrane-associated 4 beta-galactosyltransferase enzyme activity (EC 2.4.1.38). Localization of the increased specific activity to the cell surface of the enlarged gland was shown by subcellular fractionation of Golgi and plasma membranes. This observation was confirmed by enzyme assays of intact cells; quantification of immunofluorescence was made by using a fluorescence activated cell sorter. Parotid gland hypertrophy was inhibited by the administration of the specific modifier protein alpha-lactalbumin as well as by a monospecific antibody for 4 beta-galactosyltransferase. These agents also inhibited the incorporation of thymidine into DNA.


1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


1986 ◽  
Vol 250 (3) ◽  
pp. C430-C441 ◽  
Author(s):  
C. N. Conteas ◽  
A. A. McDonough ◽  
T. R. Kozlowski ◽  
C. B. Hensley ◽  
R. L. Wood ◽  
...  

Recent subcellular fractionation studies have raised the possibility that Na+-K+-ATPase might be present in both the apical and the basal-lateral membranes of exocrine gland acinar cells. Analytical fractionation and immunofluorescence microscopy studies of rat parotid glands were performed to confirm this interpretation. The distributions of biochemical markers after analyses based on differential sedimentation, equilibrium density-gradient centrifugation, and partitioning in an aqueous polymer two-phase system defined a total of 15 physically and biochemically distinct membrane populations. Among these populations, it was possible to select one (designated population i) with the characteristics expected of acinar cell basal-lateral plasma membranes. It contained Na+-K+-ATPase enriched 33-fold, and gamma-glutamyl transpeptidase enriched 23-fold with respect to the initial homogenate. A second population (designated population c) had the characteristics expected of acinar cell apical plasma membranes; it contained Na+-K+-ATPase enriched 28-fold, and gamma-glutamyl transpeptidase enriched 53-fold with respect to the initial homogenate. Although the identification of population c remains provisional, immunofluorescence studies verified that Na+-K+-ATPase is present in both the apical and the basal-lateral acinar cell plasma membranes. In view of these results, it is likely that the apical Na+-K+-ATPase would participate in series with basal-lateral sodium- and chloride-entry pathways in driving the secretory electrolyte fluxes.


1998 ◽  
Vol 201 (13) ◽  
pp. 2011-2019
Author(s):  
JC Robertson ◽  
JR Hazel

Tissue homogenates from rainbow trout gill had three- to fivefold higher specific activity for 5'-nucleotidase (5'NT) and more than twofold greater alkaline phosphodiesterase (APD) activity than liver or kidney homogenates. In isolated plasma membranes, gill 5'NT activity was 3-5 times greater than that of the kidney or liver; gill and kidney plasma membranes had similar APD specific activities, both more than five times that of liver. 5'NT and APD activities were localized by histochemistry to the endothelial (pillar) cells of trout gill secondary lamellae. Staining was consistent with the concentration of both activities at the apical plasma membranes of pillar cells (i.e. at the lamellar microvascular surfaces). This localization may reflect a capacity for processing nucleotide metabolites circulating in the blood, perhaps relating to purinergic regulation of local lamellar hemodynamics. There was no histochemical evidence of either 5'NT or APD activity in the gill epithelial (pavement) cells that interface directly with the environment. In contrast, in trout kidney, both enzyme activities localized to the apical region of tubule epithelial cells. The absence of 5'NT and APD activity in pavement cells reinforces the unique structural and functional character of the gill-environment epithelial barrier. The results indicate that 5'NT and APD activities have particular potential application as markers in efforts to isolate and characterize specific gill plasma membrane fractions.


1977 ◽  
Vol 55 (8) ◽  
pp. 876-885 ◽  
Author(s):  
Patricia L. Chang ◽  
John R. Riordan ◽  
Mario A. Moscarello ◽  
Jennifer M. Sturgess

To study membrane biogenesis and to test the validity of the endomembrane flow hypothesis, incorporation of 32P and [Me-3H]choline in vivo into membranes of the rat liver was followed. Rough microsomal, Golgi-rich, and plasma membrane fractions were monitored with marker enzyme assays and shown with morphometric analysis to contain 82% rough microsomes, at least 70% Golgi complexes, and 88% plasma membranes, respectively. Membrane subfractions from the rough microsomal and Golgi-rich fractions were prepared by sonic disruption.At 5 to 30 min after 32P injection, the specific radioactivity of phosphatidylcholine was higher in the rough microsomal membranes than in the Golgi membranes. From 1 to 3 h, the specific activity of phosphatidylcholine in Golgi membranes became higher and reached the maximum at about 3 h. Although the plasma membrane had the lowest specific radioactivity throughout 0.25–3 h, it increased rapidly thereafter to attain the highest specific activity at 5 h. Both rough microsomal and plasma membranes reached their maxima at 5 h.The specific radioactivity of [32P]phosphatidylethanolamine in the three membrane fractions was similar to that of [32P]phosphatidylcholine except from 5 to 30 min, when the specific radioactivity of phosphatidylethanolamine in the Golgi membranes was similar to the rough microsomal membranes.At 15 min to 5 h after [Me-3H]choline injection, more than 90% of the radioactivity in all the membranes was acid-precipitable. The specific radioactivities of the acid-precipitated membranes, expressed as dpm per milligram protein, reached the maximum at 3 h. After [Me-3H]choline injection, the specific radioactivity of phosphatidylcholine separated from the lipid extract of the acid-precipitated membranes (dpm per micromole phosphorus) did not differ significantly in the three membrane fractions. The results indicated rapid incorporation of choline into membrane phosphatidylcholine by the rough endoplasmic reticulum, Golgi, and plasma membranes simultaneously.The data with both 32P and [Me-3H]choline precursors did not support the endomembrane flow hypothesis. The Golgi complexes apparently synthesized phosphatidylethanolamine and incorporated choline into phosphatidylcholine as well as the endoplasmic reticulum. The results are discussed with relevance to current hypotheses on the biogenesis and transfer of membrane phospholipids.


1978 ◽  
Vol 234 (3) ◽  
pp. F247-F254
Author(s):  
R. Iyengar ◽  
D. S. Mailman ◽  
G. Sachs

Two types of plasma membrane were purified from canine distal renal medulla by the techniques of differential and zonal density-gradient centrifugation followed by free-flow electrophoresis. One group of plasma membranes was identified as basal-laterally derived based on a 30-fold enrichment of Na-K-ATPase, a 20-fold enrichment of vasopressin-stimulated adenylate cyclase, and a 33-fold enrichment of [3H]vasopressin binding sites. The second type of plasma membrane was free of these markers, but had a cholesterol and phospholipid composition similar to them. Alkaline phosphatase also had a similar distribution in the two fractions. This lighter membrane fraction contained a membrane-bound cyclic AMP-dependent protein kinase as well as substrate for this kinase. In addition there was a 26-fold enrichment of specific activity of an anion (SO32-)-activated ATPase which was insensitive to mitochondrial ATPase inhibitor protein, in contrast to the mitochondrial fraction of the tissue. Based on the relative preponderance of collecting duct tissue in the distal medulla and the yield of membrane protein, these membranes are tentatively identified as containing apical membranes of the collecting duct.


1995 ◽  
Vol 306 (3) ◽  
pp. 801-809 ◽  
Author(s):  
Y Shakur ◽  
M Wilson ◽  
L Pooley ◽  
M Lobban ◽  
S L Griffiths ◽  
...  

An antiserum was generated against a dodecapeptide whose sequence is found at the C-terminus of a cyclic AMP (cAMP)-specific, type-IVA phosphodiesterase encoded by the rat ‘dunc-like’ cyclic AMP phosphodiesterase (RD1) cDNA. This antiserum identified a single approximately 73 kDa protein species upon immunoblotting of cerebellum homogenates. This species co-migrated upon SDS/PAGE with a single immunoreactive species observed in COS cells transfected with the cDNA for RD1. Native RD1 in cerebellum was found to be predominantly (approximately 93%) membrane-associated and could be found in isolated synaptosome populations, in particular those enriched in post-synaptic densities. Fractionation of lysed synaptosomes on sucrose density gradients identified RD1 as co-migrating with the plasma membrane marker 5′-nucleotidase. Laser scanning confocal and digital deconvolution immunofluorescence studies done on intact COS cells transfected with RD1 cDNA showed RD1 to be predominantly localized to plasma membranes but also associated with the Golgi apparatus and intracellular vesicles. RD1-specific antisera immunoprecipitated phosphodiesterase activity from solubilized cerebellum membranes. This activity had the characteristics expected of the type-IV cAMP phosphodiesterase RD1 in that it was cAMP specific, exhibited a low Km cAMP of 2.3 microM, high sensitivity to inhibition by 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram) (Ki approximately 0.7 microM) and was unaffected by Ca2+/calmodulin and low concentrations of cyclic GMP. The phosphodiesterase activities of RD1 solubilized from both cerebellum and transfected COS cell membranes showed identical first-order thermal denaturation kinetics at 50 degrees C. Native RD1 from cerebellum was shown to be an integral protein in that it was solubilized using the non-ionic detergent Triton X-100 but not by either re-homogenization or high NaCl concentrations. The observation that hydroxylamine was unable to cause the release of RD1 from either cerebellum or COS membranes and that [3H]palmitate was not incorporated into the RD1 protein immunoprecipitated from COS cells transfected with RD1 cDNA, indicated that RD1 was not anchored by N-terminal acylation. The engineered deletion of the 25 residues forming the unique N-terminal domain of RD1 caused both a profound increase in its activity (approximately 2-fold increase in Vmax) and a profound change in intracellular distribution. Thus, immunofluorescence studies identified the N-terminal truncated species as occurring exclusively ion the cytosol of transfected COS cells. The cDNA for RD1 thus appears to encode a native full-length type-IVA phosphodiesterase that is expressed in cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 152 (2) ◽  
pp. 291-302 ◽  
Author(s):  
Richard Harwood ◽  
Michael E. Grant ◽  
David S. Jackson

1. The glycosylation of hydroxylysine during the biosynthesis of procollagen by embryonic chick tendon and cartilage cells was examined. When free and membrane-bound ribosomes isolated from cells labelled for 4min with [14C]lysine were assayed for hydroxy[14C]lysine and hydroxy[14C]lysine glycosides, it was found that hydroxylation took place only on membrane-bound ribosomes and that some synthesis of galactosylhydroxy[14C]lysine and glucosylgalactosylhydroxy[14C]lysine had occurred on the nascent peptides. 2. Assays of subcellular fractions isolated from tendon and cartilage cells labelled for 2h with [14C]lysine demonstrated that the glycosylation of procollagen polypeptides began in the rough endoplasmic reticulum. 14C-labelled polypeptides present in the smooth endoplasmic reticulum and Golgi fractions were glycosylated to extents almost identical with the respective secreted procollagens. 3. Assays specific for collagen galactosyltransferase and collagen glucosyltransferase are described, using as substrate chemically treated bovine anterior-lens-capsule collagen. 4. When homogenates were assayed for the collagen glycosyltransferase activities, addition of Triton X-100 (0.01%, w/v) was found to stimulate enzyme activities by up to 45%, suggesting that the enzymes were probably membrane-bound. 5. Assays of subcellular fractions obtained by differential centrifugation for collagen galactosyltransferase activity indicated the specific activity to be highest in the microsomal fractions. Similar results were obtained for collagen glucosyltransferase activity. 6. When submicrosomal fractions obtained by discontinuous-sucrose-density-gradient-centrifugation procedures were assayed for these enzymic activities, the collagen galactosyltransferase was found to be distributed in the approximate ratio 7:3 between rough and smooth endoplasmic reticulum of both cell types. Similar determinations of collagen glucosyltransferase indicated a distribution in the approximate ratio 3:2 between rough and smooth microsomal fractions. 7. Assays of subcellular fractions for the plasma-membrane marker 5′-nucleotidase revealed a distribution markedly different from the distributions obtained for the collagen glycosyltransferase. 8. The studies described here demonstrate that glycosylation occurs early in the intracellular processing of procollagen polypeptides rather than at the plasma membrane, as was previously suggested.


Sign in / Sign up

Export Citation Format

Share Document