scholarly journals Inhibition of gluconeogenesis by hypoglycin in the rat. Evidence for inhibition of glucose-6-phosphatase in vivo

1986 ◽  
Vol 240 (3) ◽  
pp. 765-769 ◽  
Author(s):  
L Hue ◽  
H S Sherratt

Treatment of rats with hypoglycaemic doses of hypoglycin has been shown to abolish the relative detritiation of [2-3H,U-14C]glucose [Osmundsen, Billington, Taylor & Sherratt (1978) Biochem. J. 170, 337-342], indicating that both the Cori and the glucose/glucose 6-phosphate cycles were inhibited in vivo. This inhibition was confirmed and, in addition, it was shown that the conversion in vivo of both [14C]lactate and [14C]fructose into glucose was decreased after hypoglycin treatment. These results suggest that hypoglycin poisoning results in the inhibition in vivo of glucose-6-phosphatase activity, which participates in the overall inhibition of gluconeogenesis and hypoglycaemia. Clofibrate feeding apparently protected the rats against the inhibition of the fructose-to-glucose conversion by hypoglycin. However, in isolated hepatocytes prepared from hypoglycin-treated rats, the conversion of [14C]fructose into glucose and the recycling of [2-3H,U-14C]glucose were not different from that in control hepatocytes. This suggests that the inhibition was lost during preparation of the hepatocytes. The direct measurement of glucose-6-phosphatase activity showed that it was inhibited when measured in concentrated, but not dilute, homogenates prepared from hypoglycin-treated rats.

2017 ◽  
Vol 5 (13) ◽  
pp. 2445-2458 ◽  
Author(s):  
I. Mitch Taylor ◽  
Zhanhong Du ◽  
Emma T. Bigelow ◽  
James R. Eles ◽  
Anthony R. Horner ◽  
...  

First everin vivosensor for directly measuring cocaine concentration in the brainviaelectrochemical detection at DNA aptamer functionalized single shank, silicon-based neural recording probes.


2008 ◽  
Vol 99 (11) ◽  
pp. 883-891 ◽  
Author(s):  
Kohei Tatsumi ◽  
Miho Kataoka ◽  
Masaru Shibata ◽  
Hiroyuki Naka ◽  
Midori Shima ◽  
...  

SummaryCell-based therapies using isolated hepatocytes have been proposed to be an attractive application in the treatment of haemophilia B due to the normal production of coagulation factor IX (FIX) in these particular cells. Current cell culture technologies have largely failed to provide adequate isolated hepatocytes, so the present studies were designed to examine a new approach to efficiently proliferate hepatocytes that can retain normal biological function, including the ability to synthesize coagulation factors like FIX. Canine or human primary hepatocytes were transplanted into urokinase-type plasminogen activatorsevere combined immunodeficiency (uPA/SCID) transgenic mice. Both donor hepatocytes from canines and humans were found to progressively proliferate in the recipient mouse livers as evidenced by a sharp increase in the circulating blood levels of species-specific albumin, which was correlated with the production and release of canine and human FIX antigen levels into the plasma. Histological examination confirmed that the transplanted canine and human hepatocytes were able to proliferate and occupy >80% of the host livers. In addition, the transplanted hepatocytes demonstrated strong cytoplasmic staining for human FIX, and the secreted coagulation factor IX was found to be haemostatically competent using specific procoagulant assays. In all, the results from the present study indicated that developments based on this technology could provide sufficient FIX-producing hepatocytes for cell-based therapy for haemophilia B.


2012 ◽  
Vol 172 (1) ◽  
pp. e55-e60 ◽  
Author(s):  
Carlo R. Bartoli ◽  
Sujith Dassanayaka ◽  
Kenneth Brittian ◽  
Arun C. Nadar ◽  
Mohamed A. Ismahil ◽  
...  

2000 ◽  
Vol 278 (4) ◽  
pp. R956-R963 ◽  
Author(s):  
Jean-Michel Weber ◽  
Deena S. Shanghavi

The rate of hepatic glucose production (Ra glucose) of rainbow trout ( Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-3H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking β-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting Ra glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 ± 0.16 to 8.75 ± 0.54 mM) and a twofold increase in Ra glucose (6.57 ± 0.79 to 13.30 ± 1.78 μmol ⋅ kg− 1 ⋅ min− 1, n = 7), whereas Prop infusion decreased Ra from 7.65 ± 0.92 to 4.10 ± 0.56 μmol ⋅ kg− 1 ⋅ min− 1( n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in Ra glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting Ra glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by β-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in Ra glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.


2000 ◽  
Vol 20 (21) ◽  
pp. 8143-8156 ◽  
Author(s):  
Haifeng Yang ◽  
Wei Jiang ◽  
Matthew Gentry ◽  
Richard L. Hallberg

ABSTRACT CDC55 encodes a Saccharomyces cerevisiaeprotein phosphatase 2A (PP2A) regulatory subunit.cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, butcdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore,cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrestedcdc55-null cells. This excess Swe1p incdc55-null cells is the result of ectopic stabilization of this protein during G2 and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Naila Naz ◽  
Shakil Ahmad ◽  
Silke Cameron ◽  
Federico Moriconi ◽  
Margret Rave-Fränk ◽  
...  

The current study aimed to investigate radiation-induced regulation of iron proteins including ferritin subunits in rats. Rat livers were selectively irradiatedin vivoat 25 Gy. This dose can be used to model radiation effects to the liver without inducing overt radiation-induced liver disease. Sham-irradiated rats served as controls. Isolated hepatocytes were irradiated at 8 Gy. Ferritin light polypeptide (FTL) was detectable in the serum of sham-irradiated rats with an increase after irradiation. Liver irradiation increased hepatic protein expression of both ferritin subunits. A rather early increase (3 h) was observed for hepatic TfR1 and Fpn-1 followed by a decrease at 12 h. The increase in TfR2 persisted over the observed time. Parallel to the elevation of AST levels, a significant increase (24 h) in hepatic iron content was measured. Complete blood count analysis showed a significant decrease in leukocyte number with an early increase in neutrophil granulocytes and a decrease in lymphocytes.In vitro, a significant increase in ferritin subunits at mRNA level was detected after irradiation which was further induced with a combination treatment of irradiation and acute phase cytokine. Irradiation can directly alter the expression of ferritin subunits and this response can be strongly influenced by radiation-induced proinflammatory cytokines. FTL can be used as a serum marker for early phase radiation-induced liver damage.


1988 ◽  
Vol 36 (9) ◽  
pp. 1175-1180 ◽  
Author(s):  
M W Lundy ◽  
K H Lau ◽  
H C Blair ◽  
D J Baylink

We used histological and biochemical methods to determine the cellular origin of bone matrix fluoride-sensitive acid phosphatase in chicken bone. Embryonic chicken calvariae were embedded in plastic and sections stained for acid phosphatase at various concentrations of substrate and fluoride. Acid phosphatase activity was observed in osteoblasts and osteoclasts but not in fibroblasts. Striking inhibition of osteoblastic acid phosphatase occurred at 100 microM fluoride, a concentration that had no apparent effect on osteoclastic acid phosphatase. Inhibition of osteoblastic and osteoclastic acid phosphatase by fluoride was also examined using extracts of embryonic chicken calvarial cells, mouse osteoblasts (MC3T3-El cell line), and purified chick osteoclasts, respectively. Fluoride is a partial competitive inhibitor of both chicken and mouse osteoblastic acid phosphatases, with apparent inhibition constants of 10-100 microM. These concentrations of fluoride correspond to those that increase bone formation in vitro and in vivo. In contrast, the apparent inhibition constant for fluoride of osteoclastic acid phosphatase was much higher (i.e., 0.5 mM). In summary, this study demonstrates that chicken osteoblasts contain an acid phosphatase that is sensitive to inhibition by low concentrations (i.e., microM) of fluoride.


1980 ◽  
Vol 186 (1) ◽  
pp. 35-45 ◽  
Author(s):  
A J Dickson ◽  
C I Pogson

Methods have been derived which permit the isolation of undergraded polyribosomes from isolated rat liver cells. Under the conditions used the polyribosome profile of hepatocytes immediately after isolation was essentially identical with that from intact liver. However, during incubation of cells in complex physiological media there was a progressive dissociation of polyribosomes. The addition of a variety of factors that produce reaggregation of polyribosomes in rat liver in vivo did not prevent dissociation during cell incubations. Although large polyribosomes were lost most rapidly, the albumin-synthesizing capacity of isolated cells was not selectively lost when compared with total protein synthesis. The significance of these results for the use of isolated hepatocytes in the study of liver protein synthesis is discussed.


Sign in / Sign up

Export Citation Format

Share Document