scholarly journals Glucose transporters in isolated chromaffin cells. Effects of insulin and secretagogues

1987 ◽  
Vol 243 (2) ◽  
pp. 541-547 ◽  
Author(s):  
E G Delicado ◽  
M T Miras Portugal

1. Isolated chromaffin cells from bovine adrenal medulla were used to study glucose transport in a homogeneous neural tissue. 2. The affinity of glucose transporters was 1.20 +/- 0.52 mM by the infinite-cis technique and 1.02 +/- 0.09 mM by the direct transport experiments. 3. The affinity for 2-deoxyglucose of these transporters was 2.3 mM. 4. The glucose transporters, quantified by [3H]cytochalasin B binding, were 419,532 +/- 120,740 receptors/cell, which corresponds to about 7.2 +/- 2 pmol/mg of protein, with KD = 0.1 microM. 5. High-affinity insulin receptors with KD = 3.95 nM were present at a density of 68,400 +/- 7500 per cell. 6. Insulin and secretagogues increased glucose transport, raising the transporter number at the plasma membrane without changes in the affinity.

2010 ◽  
Vol 89 (1) ◽  
pp. 44-57 ◽  
Author(s):  
A.M. Oliván ◽  
R. Pérez-Rodríguez ◽  
C. Roncero ◽  
C. Arce ◽  
M.P. González ◽  
...  

1986 ◽  
Vol 240 (1) ◽  
pp. 115-123 ◽  
Author(s):  
T P Ciaraldi ◽  
R Horuk ◽  
S Matthaei

The properties of the glucose-transport systems in rat adipocytes and hepatocytes were compared in cells prepared from the same animals. Hormones and other agents which cause a large stimulation of 3-O-methylglucose transport in adipocytes were without acute effect in hepatocytes. Hepatocytes displayed a lower affinity for 3-O-methylglucose (20 mM) and alternative substrates than adipocytes (6 mM), whereas inhibitor affinities were similar in both cell types. The concentration and distribution of glucose transporters were determined by Scatchard analysis of D-glucose-inhibitable [3H]cytochalasin B binding to subcellular fractions. In liver, most of the transporters were located in the plasma membrane (42 +/- 5 pmol/mg of protein) with a small amount (4 +/- 3 pmol/mg) in the low-density microsomal fraction (‘microsomes’), the reverse of the situation in adipocytes. Glucose transporters were covalently labelled with [3H]cytochalasin B by using the photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate and analysed by SDS/polyacrylamide-gel electrophoresis. A single D-glucose-inhibitable peak with a molecular mass of 40-50 kDa was seen in both plasma membrane and low-density microsomes. This peak was further characterized by isoelectric focusing and revealed a single peak of specific [3H]cytochalasin B binding at pI 6.05 in both low-density microsomes and plasma membrane, compared with peaks at pI 6.4 and 5.6 in adipocyte membranes. In summary: the glucose-transport system in hepatocytes has a lower affinity and higher capacity than that in adipocytes, and is also not accurately modulated by insulin; the subcellular distribution of glucose transporters in the liver suggests that few intracellular transporters would be available for translocation; the liver transporter has a molecular mass similar to that of the adipocyte transporter; the liver glucose transporter exists as a single charged form (pI 6.05), compared with the multiple forms in adipocytes. This difference in charge could reflect a functionally important difference in molecular structure between the two cell types.


1992 ◽  
Vol 284 (2) ◽  
pp. 341-348 ◽  
Author(s):  
D Dimitrakoudis ◽  
T Ramlal ◽  
S Rastogi ◽  
M Vranic ◽  
A Klip

The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of glycaemia.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyang Li ◽  
Qian Liu ◽  
Jingen Li ◽  
Liangcai Lin ◽  
Xiaolin Li ◽  
...  

Abstract Background Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. Results In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. Conclusions RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.


Author(s):  
Fernando F. Vargas ◽  
Soledad Calvo ◽  
Raul Vinet ◽  
Eduardo Rojas

1994 ◽  
Vol 107 (3) ◽  
pp. 487-496 ◽  
Author(s):  
I. Guillet-Deniau ◽  
A. Leturque ◽  
J. Girard

Skeletal muscle regeneration is mediated by the proliferation of myoblasts from stem cells located beneath the basal lamina of myofibres, the muscle satellite cells. They are functionally indistinguishable from embryonic myoblasts. The myogenic process includes the fusion of myoblasts into multinucleated myotubes, the biosynthesis of proteins specific for skeletal muscle and proteins that regulates glucose metabolism, the glucose transporters. We find that three isoforms of glucose transporter are expressed during foetal myoblast differentiation: GLUT1, GLUT3 and GLUT4; their relative expression being dependent upon the stage of differentiation of the cells. GLUT1 mRNA and protein were abundant only in myoblasts from 19-day-old rat foetuses or from adult muscles. GLUT3 mRNA and protein, detectable in both cell types, increased markedly during cell fusion, but decreased in contracting myotubes. GLUT4 mRNA and protein were not expressed in myoblasts. They appeared only in spontaneously contracting myotubes cultured on an extracellular matrix. Insulin or IGF-I had no effect on the expression of the three glucose transporter isoforms, even in the absence of glucose. The rate of glucose transport, assessed using 2-[3H]deoxyglucose, was 2-fold higher in myotubes than in myoblasts. Glucose deprivation increased the basal rate of glucose transport by 2-fold in myoblasts, and 4-fold in myotubes. The cellular localization of the glucose transporters was directly examined by immunofluorescence staining. GLUT1 was located on the plasma membrane of myoblasts and myotubes. GLUT3 was located intracellularly in myoblasts and appeared also on the plasma membrane in myotubes. Insulin or IGF-I were unable to target GLUT3 to the plasma membrane. GLUT4, the insulin-regulatable glucose transporter isoform, appeared only in contracting myotubes in small intracellular vesicles. It was translocated to the plasma membrane after a short exposure to insulin, as it is in skeletal muscle in vivo. These results show that there is a switch in glucose transporter isoform expression during myogenic differentiation, dependent upon the energy required by the different stages of the process. GLUT3 seemed to play a role during cell fusion, and could be a marker for the muscle's ability to regenerate.


1989 ◽  
Vol 257 (4) ◽  
pp. E520-E530
Author(s):  
M. F. Hirshman ◽  
L. J. Wardzala ◽  
L. J. Goodyear ◽  
S. P. Fuller ◽  
E. D. Horton ◽  
...  

We studied the mechanism for the increase in glucose transport activity that occurs in adipose cells of exercise-trained rats. Glucose transport activity, glucose metabolism, and the subcellular distribution of glucose transporters were measured in adipose cells from rats raised in wheel cages for 6 wk (mean total exercise 350 km/rat), age-matched sedentary controls, and young sedentary controls matched for adipose cell size. Basal rates of glucose transport and metabolism were greater in cells from exercise-trained rats compared with young controls, and insulin-stimulated rates were greater in the exercise-trained rats compared with both age-matched and young controls. The numbers of plasma membrane glucose transporters were not different among groups in the basal state; however, with insulin stimulation, cells from exercise-trained animals had significantly more plasma membrane transporters than young controls or age-matched controls. Exercise-trained rats also had more low-density microsomal transporters than control rats in the basal state. When the total number of glucose transporters/cell was calculated, the exercise-trained rats had 42% more transporters than did either control group. These studies demonstrate that the increased glucose transport and metabolism observed in insulin-stimulated adipose cells from exercise-trained rats is due, primarily, to an increase in the number of plasma membrane glucose transporters translocated from an enlarged intracellular pool.


Sign in / Sign up

Export Citation Format

Share Document