scholarly journals Does a calmodulin-dependent Ca2+-regulated Mg2+-dependent ATPase contribute to hepatic microsomal calcium uptake?

1987 ◽  
Vol 243 (3) ◽  
pp. 729-737 ◽  
Author(s):  
S Schütze ◽  
H D Söling

Solubilization of microsomal proteins followed by calmodulin affinity chromatography resulted in the separation of two distinct Ca2+-Mg2+-ATPases (Ca2+-regulated Mg2+-dependent ATPases), one being insensitive to calmodulin (ATPase-1), the other being stimulated about 5-fold by calmodulin (ATPase-2). ATPase-2 accounts for only 8% of total microsomal Ca2+-Mg2+-ATPase-activity. ATPase-1 and -2 can also be distinguished by different pH optima, different sensitivity towards inhibition by vanadate and LaCl3, and different apparent Mr values of the phosphoenzyme intermediates (115,000 and 150,000 for ATPase-1 and ATPase-2 respectively). ATPase-1 from liver co-migrated with Ca2+-Mg2+-ATPase from rat skeletal-muscle sarcoplasmic reticulum, whereas ATPase-2 from liver co-migrated with calmodulin-dependent Ca2+-Mg2+-ATPase derived from rat skeletal-muscle sarcolemma. After separation of parenchymal and nonparenchymal liver cells, a calmodulin-dependent Ca2+-Mg2+-ATPase of Mr 150,000 was found only in the non-parenchymal cells. The kinetic parameters of ATPase-2 and the similarity of the apparent Mr of its phosphoenzyme intermediate to that of skeletal-muscle sarcolemma Ca2+-Mg2+-ATPase makes it likely that the calmodulin-sensitive Ca2+-Mg2+-ATPase found in rat liver microsomal fractions reflects a contamination with plasma membranes (possibly from non-parenchymal cells) rather than a true location in the endoplasmic reticulum of parenchymal liver cells.

1988 ◽  
Vol 66 (9) ◽  
pp. 1210-1213 ◽  
Author(s):  
G. B. Frank ◽  
L. Konya ◽  
T. Subrahmanyam Sudha

The effects of the organic calcium channel blocker nitrendipine was tested on electrically evoked twitches and on potassium depolarization-induced contractures of rat lumbricalis muscles. Nitrendipine (10−7 to 5 × 10−5 M) blocked only the potassium contractures. It was concluded that blocking calcium uptake through the slow voltage-senstitive calcium channels during potassium depolarization blocks the mechanical response of the muscle. Thus extracellular calcium ions are required for the excitation–contraction (E–C) coupling during depolarization contractures. On the other hand, electrically evoked twitches were not affected by nitrendipine; therefore, extracellular calcium ions entering via the slow voltage-sensitive channels are not required for E–C coupling during the twitch.


1997 ◽  
Vol 321 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Belinda BREEDVELD ◽  
Kees SCHOONDERWOERD ◽  
Adrie J. M. VERHOEVEN ◽  
Rob WILLEMSEN ◽  
Hans JANSEN

Hepatic lipase (HL) is thought to be located at the vascular endothelium in the liver. However, it has also been implicated in the binding and internalization of chylomicron remnants in the parenchymal cells. In view of this apparent discrepancy between localization and function, we re-investigated the localization of HL in rat liver using biochemical and immunohistochemical techniques. The binding of HL to endothelial cells was studied in primary cultures of rat liver endothelial cells. Endothelial cells bound HL in a saturable manner with high affinity. However, the binding capacity accounted for at most 1% of the total HL activity present in the whole liver. These results contrasted with earlier studies, in which non-parenchymal cell (NPC) preparations had been found to bind HL with a high capacity. To study HL binding to the different components of the NPC preparations, we separated endothelial cells, Kupffer cells and blebs by counterflow elutriation. Kupffer cells and endothelial cells showed a relatively low HL-binding capacity. In contrast, the blebs, representing parenchymal-cell-derived material, had a high HL-binding capacity (33 m-units/mg of protein) and accounted for more than 80% of the total HL binding in the NPC preparation. In contrast with endothelial and Kupffer cells, the HL-binding capacity of parenchymal cells could account for almost all the HL activity found in the whole liver. These data strongly suggest that HL binding occurs at parenchymal liver cells. To confirm this conclusion in situ, we studied HL localization by immunocytochemical techniques. Using immunofluorescence, we confirmed the sinusoidal localization of HL. Immunoelectron microscopy demonstrated that virtually all HL was located at the microvilli of parenchymal liver cells, with a minor amount at the endothelium. We conclude that, in rat liver, HL is localized at the microvilli of parenchymal cells.


1987 ◽  
Vol 65 (2) ◽  
pp. 272-273 ◽  
Author(s):  
Michael Chua ◽  
Angela F. Dulhunty

The action of the tranquilizer diazepam on rat skeletal muscle showed that relaxation of isometric twitches is controlled by different processes in extensor digitorum longus (fast-twitch) and soleus (slow-twitch) muscles. Diazepam caused an increase in the amplitude of twitches in fibres from both muscles but increased the twitch duration only in soleus. The amplitude of fused tetani were reduced in both muscles and the rate of relaxation after the tetanus slowed by as much as 34% when the amplitude of the tetanus was reduced by only 11%. The slower tetanic relaxation indicated that calcium uptake by the sarcoplasmic reticulum was slower than normal in slow- and fast-twitch fibres. We conclude therefore that calcium uptake by the sarcoplasmic reticulum is rate limiting for twitch relaxation in slow-twitch but not fast-twitch fibres and suggest that calcium binding to parvalbumin controls relaxation in the fast fibres.


1995 ◽  
Vol 20 (1) ◽  
pp. 112-124 ◽  
Author(s):  
Karl J. A. McCullagh ◽  
Arend Bonen

Biochemical studies were conducted to determine the location of a putative lactate transport protein in rat skeletal muscle plasma membranes (PM). PM (50-100 μg protein) were incubated with [U-14C] L(+)-lactate, in the presence or absence of unlabeled monocarboxylates or potential inhibitors, after which proteins were separated by SDS-PAGE. Gel slices (2 mm) were cut and analyzed for14C. [U-14C] L(+)-lactate was bound to plasma membranes in the 30 to 40 kDa molecular mass range. Binding of [U-14C] L(+)-lactate was inhibited by N-ethylmaleimide, unlabeled L-lactate and pyruvate, and in a dose dependent manner by α-cyano-4-hydroxycinnamate (r = 0.995), but not by cytochalasin-B. The inhibition of [U-14C] L(+)-lactate binding was similar to the inhibition of lactate transport. Therefore the transport of L(+)-lactate across skeletal muscle plasma membranes involves a polypeptide of 30 to 40 kDa. Key words: transport, affinity labeling


1992 ◽  
Vol 282 (1) ◽  
pp. 41-48 ◽  
Author(s):  
R De Water ◽  
J A A M Kamps ◽  
M C M Van Dijk ◽  
E A M J Hessels ◽  
J Kuiper ◽  
...  

beta-Migrating very-low-density lipoprotein (beta-VLDL) is a cholesteryl-ester-enriched lipoprotein which under normal conditions is rapidly cleared by parenchymal liver cells. In this study the characteristics of the interaction of beta-VLDL with rat parenchymal cells, Hep G2 cells and human parenchymal cells are evaluated. The binding of beta-VLDL to these cells follows saturation kinetics (Bmax. respectively 117, 106 and 103 ng of beta-VLDL apoliprotein/mg of cell protein), with a relatively high affinity (Kd respectively for beta-VLDL of 10.7, 5.1 and 8.4 micrograms/ml). Competition studies of unlabelled beta-VLDL, low-density lipoprotein (LDL) or acetylated LDL with the binding of radiolabelled beta-VLDL indicate that a LDL-receptor-independent, Ca(2+)-independent, specific recognition site for beta-VLDL is present on rat and human parenchymal cells, whereas with Hep G2 cells or mouse macrophages beta-VLDL recognition is performed by the LDL receptor. The binding of beta-VLDL to Hep G2 cells was down-regulated by 89% by prolonged exposure to beta-VLDL, whereas for human parenchymal and rat parenchymal cells down-regulation of 44% and 20% respectively was observed. Studies with antibodies against the LDL receptor support the presence of a LDL-receptor-independent specific beta-VLDL recognition site on rat and human parenchymal cells. It is concluded that a LDL-receptor-independent recognition site for beta-VLDL is present on rat and human parenchymal liver cells. The presence of a LDL-receptor-independent recognition site on human parenchymal cells may mediate in vivo the uptake of beta-VLDL during consumption of a cholesterol-rich diet, when LDL receptors are down-regulated, thus protecting against the extrahepatic accumulation of the atherogenic beta-VLDL constituents.


1975 ◽  
Vol 49 (4) ◽  
pp. 359-368
Author(s):  
N. S. Dhalla ◽  
A. Singh ◽  
S. L. Lee ◽  
M. B. Anand ◽  
A. M. Bernatsky ◽  
...  

1. The function of mitochondria, sarcotubular membranes (heavy microsomes), sarcolemma and myofibrils from the hind-leg skeletal muscle of about 60- and 150-day-old normal and myopathic (UM-X7.1) hamsters was examined. 2. The mitochondrial calcium uptake as well as mitochondrial phosphorylation and respiratory rates were lower in 60-day-old myopathic skeletal muscle, unlike 150-day-old myopathic animals, when pyruvate-malate and glutamate-malate were used as substrates. However, mitochondria from 150-day-old myopathic animals showed depressed glutamate-dependent respiratory and phosphorylation rates and succinate-supported initial rate of calcium uptake. 3. The microsomal calcium-uptake, but not calcium-binding, and Ca2+-stimulated adenosine triphosphatase (ATPase) activity of the 150-day-old myopathic skeletal muscle were lower than the control values. Although microsomal calcium-binding, calcium-uptake and ATPase activities of the 60-day-old myopathic muscle were not depressed significantly, the initial rate of calcium uptake was less than the control. 4. The sarcolemmal Ca2+-ATPase, but not Mg2+-ATPase or Na+ +K+-ATPase, activity was higher in 60-day-old myopathic muscle whereas the activities of all these enzymes from 150-day-old myopathic animals were higher than the control. On the other hand, the Na+ +K+-ATPase activities from 60- and 150-day-old myopathic animals were inhibited by ouabain to a lesser extent in comparison with the respective control values. 5. The myofibrillar Ca2+-ATPase and Mg2+-ATPase activities as well as inhibition of Mg2+-ATPase due to Na+ and K+ in myopathic muscle were no different from the control values. 6. The results reported here give further support to the view that different membrane systems of the dystrophic muscle are defective.


1984 ◽  
Vol 223 (1) ◽  
pp. 151-160 ◽  
Author(s):  
H Tolleshaug ◽  
T Berg ◽  
R Blomhoff

Even though most of the hepatic binding capacity for mannose-terminated glycoproteins has previously been shown to reside in the hepatocytes (not in the non-parenchymal cells), detailed evidence for the specific uptake of mannose-terminated ligands has been lacking. In the present studies, yeast invertase, a large glycoprotein (Mr 270 000) containing about 50% mannose, was shown to be taken up into hepatocytes by receptor-mediated endocytosis. The uptake was saturable and could be specifically inhibited by mannosides or by a Ca2+ chelator. The asialo-glycoprotein receptor was not involved. The low-Mr (13 000) ligand ribonuclease B, which contains a single high-mannose glycan, was not taken up by hepatocytes; however, it was taken up as fast as invertase by non-parenchymal liver cells. After injection of 131I-invertase into a rat in vivo, about one-half of the labelled protein was recovered in the hepatocytes. On a per-cell basis, each endothelial cell contained 3-4 times as much radioactivity as did the hepatocytes. On fractionation of hepatocytes in sucrose gradients, invertase showed a different intracellular distribution from that of asialo-fetuin, in that invertase moved much faster into that region of the gradient where the lysosomes were recovered. This indicates that invertase and asialo-fetuin are not transported intracellularly by identical mechanisms.


1988 ◽  
Vol 252 (2) ◽  
pp. 601-605 ◽  
Author(s):  
E Casteleijn ◽  
J Kuiper ◽  
H C Van Rooij ◽  
J F Koster ◽  
T J Van Berkel

The possible role of Kupffer and endothelial liver cells in the regulation of parenchymal-liver-cell function was assessed by studying the influence of conditioned media of isolated Kupffer and endothelial cells on protein phosphorylation in isolated parenchymal cells. The phosphorylation state of three proteins was selectively influenced by the conditioned media. The phosphorylation state of an Mr-63,000 protein was decreased and the phosphorylation state of an Mr-47,000 and an Mr-97,000 protein was enhanced by these media. These effects could be mimicked by adding either prostaglandin E1, E2 or D2. Both conditioned media and prostaglandins stimulated the phosphorylase activity in parenchymal liver cells, suggesting that the Mr-97,000 phosphoprotein might be phosphorylase. Parenchymal liver cells secrete a phosphoprotein of Mr-63,000 and pI 5.0-5.5. The phosphorylation of this protein is inhibited by Kupffer- and endothelial-liver-cell media, and prostaglandins E1, E2 and D2 had a similar effect. The data indicate that Kupffer and endothelial liver cells secrete factors which influence the protein phosphorylation in parenchymal liver cells. This forms further evidence that products from non-parenchymal liver cells, in particular prostaglandin D2, might regulate glucose homoeostasis and/or other specific metabolic processes inside parenchymal cells. This stresses the concept of cellular communication inside the liver as a way by which the liver can rapidly respond to extrahepatic signals.


1996 ◽  
Vol 313 (1) ◽  
pp. 289-295 ◽  
Author(s):  
Gijsbertus J. ZIERE ◽  
J. Kar KRUIJT ◽  
Martin K. BIJSTERBOSCH ◽  
Theo J. C. van BERKEL

1. Lactoferrin and aminopeptidase M-modified lactoferrin (APM-lactoferrin; which lacks its 14 N-terminal amino acids) inhibit the liver uptake of lipoprotein remnants. In the present study, the role of proteoglycans in the initial interaction of β-migrating very-low-density lipoprotein (β-VLDL), native and APM-lactoferrin with isolated rat parenchymal liver cells was investigated. Treatment of the cells with chondroitinase lowered the Kd of lactoferrin binding (from 10 to 2.4 μM), and the number of sites/cell (from 20×106 to 7×106), while heparinase treatment did not affect the binding. The binding characteristics of APM-lactoferrin and β-VLDL were not altered by treatment of the cells with chondroitinase or heparinase. It is concluded that proteoglycans are not involved in the initial binding of APM-lactoferrin and β-VLDL to parenchymal cells, while chondroitin sulphate proteoglycans are mainly responsible for the massive, low-affinity binding of native lactoferrin. 2. The binding of lactoferrin, APM-lactoferrin and β-VLDL to parenchymal liver cells was not influenced by the glutathione S-transferase-receptor-associated protein (GST-RAP) (97.2±4.0%, 95.5±3.7% and 98.5% of the control binding), while the binding of α2-macroglobulin was fully blocked at 10 μg/ml GST-RAP (1.8±0.5% of the control binding). Since GST-RAP blocks the binding of all the known ligands to the low-density lipoprotein (LDL)-receptor-related protein (LRP), it is concluded that LRP is not the initial primary recognition site for lactoferrin, APM-lactoferrin and β-VLDL on parenchymal liver cells. 3. We showed earlier that APM-lactoferrin, as compared with lactoferrin, is a more effective inhibitor of the liver uptake of lipoprotein remnants (49.4±4.0% versus 80.8±4.8% of the control at 500 μg/ml respectively). We found in the present study that β-VLDL is able to inhibit the binding of APM-lactoferrin to parenchymal liver cells significantly (74.9±3.3% of the control; P < 0.002), while the lactoferrin binding was unaffected. It is concluded that a still unidentified specific recognition site (the putative remnant receptor) is responsible for the initial binding of remnants to parenchymal cells and it is suggested that the partial cross-competition between APM-lactoferrin and β-VLDL may be of further help in the elucidation of the molecular nature of this recognition site.


Sign in / Sign up

Export Citation Format

Share Document