specific uptake
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 56)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Seo Young Kim ◽  
Jihye Choi ◽  
Junhee Roh ◽  
Chul Hoon Kim

AbstractIn the CNS, pericytes are important for maintaining the blood–brain barrier (BBB) and for controlling blood flow. Recently, several methods were suggested for the differentiation of human pluripotent stem cells (hPSCs) into brain mural cells, specifically pericytes or vascular smooth muscle cells (vSMCs). Unfortunately, identifying the pericytes from among such hPSC-derived mural cells has been challenging. This is due both to the lack of pericyte-specific markers and to the loss of defining anatomical information inherent to culture conditions. We therefore asked whether NeuroTrace 500/525, a newly developed dye that shows cell-specific uptake into pericytes in the mouse brain, can help identify human induced pluripotent stem cell (hiPSC)-derived brain pericyte-like cells. First, we found that NeuroTrace 500/525 specifically stains primary cultured human brain pericytes, confirming its specificity in vitro. Second, we found that NeuroTrace 500/525 specifically labels hiPSC-derived pericyte-like cells, but not endothelial cells or vSMCs derived from the same hiPSCs. Last, we found that neuroectoderm-derived vSMCs, which have pericyte-like features, also take up NeuroTrace 500/525. These data indicate NeuroTrace 500/525 is useful for identifying pericyte-like cells among hiPSC-derived brain mural cells.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Kyung-Ho Jung ◽  
Jin Hee Lee ◽  
Mina Kim ◽  
Eun Ji Lee ◽  
Young Seok Cho ◽  
...  

We developed an immuno-PET technique that monitors modulation of tumor CD133 expression, which is required for the success of CD133-targeted therapies. Methods. Anti-CD133 antibodies were subjected to sulfhydryl moiety-specific 89Zr conjugation. 89Zr-CD133 IgG was evaluated for specific activity and radiolabel stability. Colon cancer cells underwent binding assays and Western blotting. Biodistribution and PET studies were performed in mice. Results. 89Zr-CD133 IgG showed excellent target specificity with 97.2 ± 0.7 % blocking of HT29 cell binding by an excess antibody. Intravenous 89Zr-CD133 IgG followed biexponential blood clearance and showed CD133-specific uptake in HT29 tumors. 89Zr-CD133 IgG PET/CT and biodistribution studies confirmed high HT29 tumor uptake with lower activities in the blood and normal organs. In HT29 cells, celecoxib dose-dependently decreased CD133 expression and 89Zr-CD133 IgG binding that reached 19.9 ± 2.1 % ( P < 0.005 ) and 50.3 ± 10.9 % ( P < 0.001 ) of baseline levels by 50 μM, respectively. Celecoxib treatment of mice significantly suppressed tumor CD133 expression to 67.5 ± 7.8 % of controls ( P < 0.005 ) and reduced tumor 89Zr-CD133 IgG uptake from 15.5 ± 1.4 % at baseline to 12.3 ± 2.0 % ID / g ( P < 0.01 ). Celecoxib-induced CD133 reduction in HT29 cells and tumors was associated with substantial suppression of AKT activation. There were also reduced HIF-1α accumulation and IκBα/NFκB phosphorylation. Conclusion. 89Zr-CD133 IgG PET provides high-contrast tumor imaging and monitors celecoxib treatment-induced modulation of tumor CD133 expression, which was found to occur through AKT inhibition. This technique may thus be useful for screening drugs that can effectively suppress colon cancer stem cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeremy A. Antonyshyn ◽  
Vienna Mazzoli ◽  
Meghan J. McFadden ◽  
Anthony O. Gramolini ◽  
Stefan O. P. Hofer ◽  
...  

AbstractEndothelial cells are among the fundamental building blocks for vascular tissue engineering. However, a clinically viable source of endothelium has continued to elude the field. Here, we demonstrate the feasibility of sourcing autologous endothelium from human fat – an abundant and uniquely dispensable tissue that can be readily harvested with minimally invasive procedures. We investigate the challenges underlying the overgrowth of human adipose tissue-derived microvascular endothelial cells by stromal cells to facilitate the development of a reliable method for their acquisition. Magnet-assisted cell sorting strategies are established to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the enrichment of endothelial cells to purities that prevent their overgrowth by stromal cells. This work delineates a reliable method for acquiring human adipose tissue-derived microvascular endothelial cells in large quantities with high purities that can be readily applied in future vascular tissue engineering applications.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5093
Author(s):  
Berthold A. Nock ◽  
Aikaterini Kaloudi ◽  
Panagiotis Kanellopoulos ◽  
Barbara Janota ◽  
Barbara Bromińska ◽  
...  

Diagnostic imaging and radionuclide therapy of prostate (PC) and breast cancer (BC) using radiolabeled gastrin-releasing peptide receptor (GRPR)-antagonists represents a promising approach. We herein propose the GRPR-antagonist based radiotracer [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DGA-DPhe6,Sar11,LeuNHEt13]BBN(6-13); N4: 6-carboxy-1,4,8,11-tetraazaundecane, AMA: aminomethyl-aniline, DGA: diglycolic acid) as a new diagnostic tool for GRPR-positive tumors applying SPECT/CT. The uptake of [99mTc]Tc-DB15 was tested in vitro in mammary (T-47D) and prostate cancer (PC-3) cells and in vivo in T-47D or PC-3 xenograft-bearing mice as well as in BC patients. DB15 showed high GRPR-affinity (IC50 = 0.37 ± 0.03 nM) and [99mTc]Tc-DB15 strongly bound to the cell-membrane of T-47D and PC-3 cells, according to a radiolabeled antagonist profile. In mice, the radiotracer showed high and prolonged GRPR-specific uptake in PC-3 (e.g., 25.56 ± 2.78 %IA/g vs. 0.72 ± 0.12 %IA/g in block; 4 h pi) and T-47D (e.g., 15.82 ± 3.20 %IA/g vs. 3.82 ± 0.30 %IA/g in block; 4 h pi) tumors, while rapidly clearing from background. In patients with advanced BC, the tracer could reveal several bone and soft tissue metastases on SPECT/CT. The attractive pharmacokinetic profile of [99mTc]DB15 in mice and its capability to target GRPR-positive BC lesions in patients highlight its prospects for a broader clinical use, an option currently being explored by ongoing clinical studies.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4937
Author(s):  
Johannes Linxweiler ◽  
Anja Kolbinger ◽  
Dirk Himbert ◽  
Philip Zeuschner ◽  
Matthias Saar ◽  
...  

Extracellular vesicles (EVs) secreted by cancer cells have been shown to take a pivotal part in the process of local and systemic tumor progression by promoting the formation of a supportive local tumor microenvironment and preparing premetastatic niches in distant organ systems. In this study, we analyzed the organ-specific uptake of EVs secreted by urological cancer cells using an innovative in-vivo approach. EVs from benign and malignant prostate, kidney, and bladder cells were isolated using ultracentrifugation, fluorescence-labeled and injected intravenously in immunodeficient mice. After 12 or 24 h, the animals were sacrificed, their organs were harvested and analyzed for the presence of EVs by high-resolution fluorescence microscopy. Across all entities, EVs were taken up fast (12 h > 24 h), and EVs from malignant cells were taken up more efficiently than EVs from benign cells. Though not entirely organ-specific, EVs were incorporated in different amounts, depending on the entity (prostate: lung > liver > brain; kidney: brain > lung > liver; bladder: lung > liver > brain). EV uptake in other organs than lung, liver, brain, and spleen was not observed. Our results suggest a role of EVs in the formation of premetastatic niches and an organotropism in EV uptake, which have to be examined in more detail in further studies.


Author(s):  
Neil Gerard Quigley ◽  
Katja Steiger ◽  
Sebastian Hoberück ◽  
Norbert Czech ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract Purpose To develop a new probe for the αvβ6-integrin and assess its potential for PET imaging of carcinomas. Methods Ga-68-Trivehexin was synthesized by trimerization of the optimized αvβ6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1, as well as by cell binding assays on H2009 (αvβ6-positive) and MDA-MB-231 (αvβ6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure–activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, and metastatic PDAC. Results Ga-68-Trivehexin showed a high αvβ6-integrin affinity (IC50 = 0.047 nM), selectivity over other subtypes (IC50-based factors: αvβ8, 131; αvβ3, 57; α5β1, 468), blockable uptake in H2009 cells, and negligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a high target-specific uptake in tumor and a low non-specific uptake in other organs and tissues except the excretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results, showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10–13) as well as in kidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed high uptake in HNSCC but not in tumor-associated inflammation. Conclusions Ga-68-Trivehexin is a valuable probe for imaging of αvβ6-integrin expression in human cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Blom ◽  
Rutger Meinsma ◽  
Franca di Summa ◽  
Emile van den Akker ◽  
André B. P. van Kuilenburg ◽  
...  

Abstract Background The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake. Methods Peripheral blood CD34+ cells were differentiated to human megakaryocytic cells using a standardized culture protocol. Prior to [3H]serotonin and [125I]MIBG uptake experiments, the differentiation status of megakaryocyte cultures was assessed by flow cytometry. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess SERT and NET (norepinephrine transporter) mRNA expression. On day 10 of differentiation, [3H]serotonin and [125I]MIBG uptake assays were conducted. Part of the samples were co-incubated with the SSRI citalopram to assess SERT-specific uptake. HEK293 cells transfected with SERT, NET, and empty vector served as controls. Results In vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG. After 10 days of differentiation, megakaryocytic cell culture batches from three different hematopoietic stem and progenitor cell donors showed on average 9.2 ± 2.4 nmol of MIBG uptake per milligram protein per hour after incubation with 10–7 M MIBG (range: 6.6 ± 1.0 to 11.2 ± 1.0 nmol/mg/h). Co-incubation with the SSRI citalopram led to a significant reduction (30.1%—41.5%) in MIBG uptake, implying SERT-specific uptake of MIBG. A strong correlation between the number of mature megakaryocytes and SERT-specific MIBG uptake was observed. Conclusion Our study demonstrates that human megakaryocytes cultured in vitro are capable of MIBG uptake. Moreover, the SSRI citalopram selectively inhibits MIBG uptake via the serotonin transporter. The concomitant administration of citalopram to neuroblastoma patients during [131I]MIBG therapy might be a promising strategy to prevent the onset of thrombocytopenia.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3977
Author(s):  
Arutselvan Natarajan ◽  
Hui Zhang ◽  
Wei Ye ◽  
Lakshmi Huttad ◽  
Mingdian Tan ◽  
...  

Glypican-3 (GPC3) is an attractive diagnostic marker for hepatocellular carcinoma (HCC). We previously reported the potential of an 89Zr-labeled murine anti-GPC3 antibody (clone 1G12) for immunoPET imaging of HCC in orthotopic patient-derived xenograft (PDX) mouse models. We now humanized the murine antibody by complementarity determining region (CDR) grafting, to allow its clinical translation for human use. The engineered humanized anti-GPC3 antibody, clone H3K3, retained comparable binding affinity and specificity to human GPC3. H3K3 was conjugated with desferrioxamine (Df) and radiolabeled with 89Zr to produce the PET/CT tracer 89Zr-Df-H3K3. When injected into GPC3-expressing orthotopic HCC PDX in NOD SCID Gamma (NSG) mice, 89Zr-Df-H3K3 showed specific high uptake into the orthotopic PDX and minimal, non-specific uptake into the non-tumor bearing liver. Specificity was demonstrated by significantly higher uptake of 89Zr-Df-H3K3 into the non-blocked PDX mice, compared with the blocked PDX mice (which received prior injection of 100 mg of unlabeled H3K3). Region of interest (ROI) analysis showed that the PDX/non-tumor liver ratio was highest (mean ± SD: 3.4 ± 0.31) at 168 h post injection; this ratio was consistent with biodistribution studies at the same time point. Thus, our humanized anti-GPC3 antibody, H3K3, shows encouraging potential for use as an immunoPET tracer for diagnostic imaging of HCC patients.


2021 ◽  
Author(s):  
Neil Gerard Quigley ◽  
Katja Steiger ◽  
Sebastian Hoberück ◽  
Norbert Czech ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract PurposeTo develop a new probe for the αvβ6-integrin and assess its potential for PET imaging of carcinomas.MethodsGa-68-Trivehexin was synthesized by trimerization of an optimized αvβ6-integrin selective cyclicnonapeptide on the TRAP chelator core and automated labeling with Ga-68. The tracer wascharacterized by ELISA for activities towards integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1, as well asby cell binding assays on H2009 (αvβ6-positive) and MDA-MB-231 (αvβ6-negative) cells. SCID micebearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static(75 min p.i.) μPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationshipswere established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, andPDAC.ResultsGa-68-Trivehexin showed a high αvβ6-integrin affinity (IC50 = 0.033 nM), selectivity over othersubtypes (IC50-based factors: αvβ8, 188; αvβ3, 82; α5β1, 667), blockable uptake in H2009 cells, andnegligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a hightarget-specific uptake in tumor and a low non-specific uptake in other organs and tissues except theexcretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results,showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10–13) as well as inkidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed highuptake in HNSCC but not in tumor-associated inflammation.ConclusionsGa-68-Trivehexin is a valuable probe for imaging of αvβ6-integrin expression in human cancers.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianye Liu ◽  
Yi Zhang ◽  
Hongliang Zeng ◽  
Long Wang ◽  
Qun Zhang ◽  
...  

Abstract Background For certain human cancers, sperm associated antigen 5 (SPAG5) exerts important functions for their development and progression. However, whether RNA interference (RNAi) targeting SPAG5 has antitumor effects has not been determined clinically. Results The results indicated that Fe-doped chrysotile nanotubes (FeSiNTs) with a relatively uniform outer diameter (15–25 nm) and inner diameter (7–8 nm), and a length of several hundred nanometers, which delivered an siRNA against the SPAG5 oncogene (siSPAG5) efficiently. The nanomaterials were designed to prolong the half-life of siSPAG5 in blood, increase tumor cell-specific uptake, and maximize the efficiency of SPAG5 silencing. In vitro, FeSiNTs carrying siSPAG5 inhibited the growth, migration, and invasion of bladder cancer cells. In vivo, the FeSiNTs inhibited growth and metastasis in three models of bladder tumors (a tail vein injection lung metastatic model, an in-situ bladder cancer model, and a subcutaneous model) with no obvious toxicities. Mechanistically, we showed that FeSiNTs/siSPAG5 repressed PI3K/AKT/mTOR signaling, which suppressed the growth and progression of tumor cells. Conclusions The results highlight that FeSiNTs/siSPAG5 caused no activation of the innate immune response nor any systemic toxicity, indicating the possible therapeutic utility of FeSiNTs/siSPAG5 to deliver siSPAG5 to treat bladder cancer. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document