Diazepam reveals different rate-limiting processes in rat skeletal muscle contraction

1987 ◽  
Vol 65 (2) ◽  
pp. 272-273 ◽  
Author(s):  
Michael Chua ◽  
Angela F. Dulhunty

The action of the tranquilizer diazepam on rat skeletal muscle showed that relaxation of isometric twitches is controlled by different processes in extensor digitorum longus (fast-twitch) and soleus (slow-twitch) muscles. Diazepam caused an increase in the amplitude of twitches in fibres from both muscles but increased the twitch duration only in soleus. The amplitude of fused tetani were reduced in both muscles and the rate of relaxation after the tetanus slowed by as much as 34% when the amplitude of the tetanus was reduced by only 11%. The slower tetanic relaxation indicated that calcium uptake by the sarcoplasmic reticulum was slower than normal in slow- and fast-twitch fibres. We conclude therefore that calcium uptake by the sarcoplasmic reticulum is rate limiting for twitch relaxation in slow-twitch but not fast-twitch fibres and suggest that calcium binding to parvalbumin controls relaxation in the fast fibres.

1979 ◽  
Vol 80 (2) ◽  
pp. 372-384 ◽  
Author(s):  
A O Jorgensen ◽  
V Kalnins ◽  
D H MacLennan

Ca++-Mg++-dependent ATPase and calsequestrin, the major intrinsic and extrinsic proteins, respectively, of the sarcoplasmic reticulum, were localized in cryostat sections of adult rat skeletal muscle by immunofluorescent staining and phase-contrast microscopy. Relatively high concentrations of both the ATPase and calsequestrin were found in fast-twitch myofibers while a very low concentration of the ATPase and a moderate concentration of calsequestrin were found in slow-twitch myofibers. These findings are consistent with previous biochemical studies of the isolated sarcoplasmic reticulum of slow-twitch and fast-twitch mammalian muscles. The distribution of the ATPase in muscle fibers is distinctly different from that of calsequestrin. While calsequestrin is present only near the interface between the I- and A-band regions of the sarcomere, the ATPase is found throughout the I-band region as well as in the center of the A-band region. In comparing these results with in situ ultrastructural studies of the distribution of sarcoplasmic reticulum in fast-twitch muscle, it appears that the ATPase is rather uniformly distributed throughout the sarcoplasmic reticulum while calsequestrin is almost exclusively confined to those regions of the membrane system which correspond to terminal cisternae. Fluorescent staining with these antisera was not observed in vascular smooth muscle cells present in the cryostat sections of the mammalian skeletal muscle used in this study.


1988 ◽  
Vol 8 (4) ◽  
pp. 369-378 ◽  
Author(s):  
Marie-Jeanne Loirat ◽  
Brigitte Lucas-Heron ◽  
Béatrice Ollivier ◽  
Claude Leoty

Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding. These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.


1991 ◽  
Vol 261 (5) ◽  
pp. R1300-R1306 ◽  
Author(s):  
D. I. Finkelstein ◽  
P. Andrianakis ◽  
A. R. Luff ◽  
D. Walker

The influence of the thyroid gland on the functional and histochemical development of fast- and slow-twitch skeletal muscle of fetal sheep has been studied in euthyroid fetal sheep (n = 6) and athyroid fetuses (n = 4) surgically thyroid-ectomized at 70-75 days of gestation. Two fast-twitch muscles, the medial gastrocnemius and extensor digitorum longus, and the slow-twitch soleus muscle were studied at the fetal age of 140 days gestation. The athyroid fetuses had significantly slower twitch contraction and relaxation times in both the medial gastrocnemius and extensor digitorum longus muscles compared with the euthyroid fetuses. Twitch contraction and relaxation times of the soleus were not different in the two groups. Thyroidectomy resulted in an increase in the proportion of fast (type II) muscle fibers and myosin, as shown histochemically and by gel electrophoresis of heavy-chain myosins. These results indicate that the functional maturation of the fast-twitch muscles of sheep is influenced by the presence of an intact thyroid gland from at least 70 days of gestation. In contrast, the slow-twitch soleus muscle fiber diameter and twitch contraction and relaxation times were not different in the two groups.


1994 ◽  
Vol 76 (4) ◽  
pp. 1753-1758 ◽  
Author(s):  
A. Bonen ◽  
D. A. Homonko

In the present study, we investigated the hypotheses that 1) skeletal muscle glyconeogenesis will increase after exercise, 2) greater changes in glyconeogenesis will be observed after exercise in fast-twitch muscles than in slow-twitch muscles, and 3) glycogen repletion will reduce the rates of glyconeogenesis. Mouse soleus and extensor digitorum longus (EDL) glycogen depots were reduced to the same levels by treadmill exercise (60 min) or epinephrine injection (75 micrograms/100 g body wt ip). Untreated animals were used as controls. We were able to prevent glycogen repletion by incubating muscles in vitro with sorbitol (75 mM) and to increase glycogen concentrations in vitro by incubating muscles with glucose (75 mM). The experimental results showed that glyconeogenesis was increased by exercise (EDL, +51%; soleus, +82%) when glycogen levels were kept low. When glycogen depots were increased, the rate of glyconeogenesis was lowered in the exercised EDL (P < 0.05) but not in the soleus (P > 0.05). Reductions in muscle glycogen by epinephrine did not change the rate of glyconeogenesis in EDL, either when glycogen depots were kept low or were repleted (P > 0.05). In contrast, in the soleus, epinephrine-induced reductions in glycogen did stimulate glyconeogenesis (P < 0.05). Analyses in EDL showed that in nonexercised muscles glycogen concentrations were minimally effective in altering the rates of glyconeogenesis. A 30% decrement in glycogen increased glyconeogenesis by 5% in resting muscles, whereas the same decrement increased glyconeogenesis by 51% in exercised muscles.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 290 (1) ◽  
pp. R233-R240 ◽  
Author(s):  
Bankim A. Bhatt ◽  
John J. Dube ◽  
Nikolas Dedousis ◽  
Jodie A. Reider ◽  
Robert M. O’Doherty

Increased activity of proinflammatory/stress pathways has been implicated in the pathogenesis of insulin resistance in obesity. However, the effects of obesity on the activity of these pathways in skeletal muscle, the major insulin-sensitive tissue by mass, are poorly understood. Furthermore, the mechanisms that activate proinflammatory/stress pathways in obesity are unknown. The present study addressed the effects of diet-induced obesity (DIO; 6 wk of high-fat feeding) and acute (6-h) hyperlipidemia (HL) in rats on activity of IKK/IκB/NF-κB c-Jun NH2-terminal kinase, and p38 MAPK in three skeletal muscles differing in fiber type [superficial vastus (Vas; fast twitch-glycolytic), soleus (Sol; slow twitch-oxidative), and gastrocnemius (Gas; mixed)]. DIO decreased the levels of the IκBα in Vas (24 ± 3%, P = 0.001, n = 8) but not in Sol or Gas compared with standard chow-fed controls. Similar to DIO, HL decreased IκBα levels in Vas (26 ± 5%, P = 0.006, n = 6) and in Gas (15 ± 4%, P = 0.01, n = 7) but not in Sol compared with saline-infused controls. Importantly, the fiber-type-dependent effects on IκBα levels could not be explained by differential accumulation of triglyceride in Sol and Vas. HL, but not DIO, decreased phospho-p38 MAPK levels in Vas (41 ± 7% P = 0.004, n = 6) but not in Sol or Gas. Finally, skeletal muscle c-Jun NH2-terminal kinase activity was unchanged by DIO or HL. We conclude that diet-induced obesity and acute HL reduce IκBα levels in rat skeletal muscle in a fiber-type-dependent manner.


1992 ◽  
Vol 262 (3) ◽  
pp. C614-C620 ◽  
Author(s):  
M. Arai ◽  
K. Otsu ◽  
D. H. MacLennan ◽  
M. Periasamy

The expression of major sarcoplasmic reticulum proteins during cardiac and fast-twitch skeletal muscle development was examined using gene-specific probes. Through the use of S1 nuclease mapping, Northern blot, and RNA slot-blot analysis, sarcoplasmic reticulum proteins were shown to exhibit both narrow tissue specificity and plasticity in their expression during muscle development. In fast-twitch skeletal muscle, the cardiac/slow-twitch isoforms of Ca(2+)-ATPase and calsequestrin were detected at high levels in fetal stages but were gradually replaced by fast-twitch isoforms in adult muscle. In contrast, cardiac muscle expressed exclusively cardiac/slow-twitch isoforms of Ca(2+)-ATPase and calsequestrin at all stages. Both fast-twitch and slow-twitch skeletal muscle expressed the same skeletal muscle ryanodine receptor isoform, whereas cardiac muscle expressed a cardiac isoform. Phospholamban expression was restricted to cardiac and slow-twitch skeletal muscle and did not appear in developing fast-twitch skeletal muscle. During in vitro myogenesis of C2C12 cells, the mRNA transcripts encoding sarcoplasmic reticulum proteins were found to be coordinately induced in synchrony with that of contractile protein mRNA. The myogenic factor "myogenin" induced sarcoplasmic reticulum gene transcripts along with contractile protein mRNAs in nonmyogenic cells. These data suggest that the induction of both sarcoplasmic reticulum and contractile protein gene families is under the control of a common myogenic differentiation program.


1988 ◽  
Vol 66 (12) ◽  
pp. 1555-1559 ◽  
Author(s):  
J. Gorski ◽  
W. C. Miller ◽  
W. K. Palmer ◽  
L. B. Oscai

One purpose of this study was to determine if colchicine increased intracellular alkaline triglyceride (TG) lipase activity above control levels in rat skeletal muscle. The second aim was to determine the effects of colchicine treatment on the concentration of TG in skeletal muscle. The results show that colchicine was a potent inducer of alkaline TG lipase activity, increasing enzyme activity approximately twofold in slow-twitch red, fast-twitch red, and fast-twitch white muscle types. It was found that in slow-twitch red soleus and fast-twitch red vastus, the two muscle groups with the highest levels of enzyme activity, 76% or more of enzyme activity resides in the intracellular compartment. These results provide evidence that colchicine blocks the export of alkaline TG lipase from skeletal muscle cells similar to that seen in the heart. The finding that TG were reduced at a time when enzyme activity was elevated suggests that intracellular alkaline TG lipase may be playing a role in the hydrolysis of the intramuscular TG droplet.


1998 ◽  
Vol 274 (6) ◽  
pp. C1718-C1726 ◽  
Author(s):  
Anthony J. Bakker ◽  
Stewart I. Head ◽  
Anthony C. Wareham ◽  
D. George Stephenson

We examined the effect of the β2-agonist clenbuterol (50 μM) on depolarization-induced force responses and sarcoplasmic reticulum (SR) function in muscle fibers of the rat ( Rattus norvegicus; killed by halothane overdose) that had been mechanically skinned, rendering the β2-agonist pathway inoperable. Clenbuterol decreased the peak of depolarization-induced force responses in the extensor digitorum longus (EDL) and soleus fibers to 77.2 ± 9.0 and 55.6 ± 5.4%, respectively, of controls. The soleus fibers did not recover. Clenbuterol significantly and reversibly reduced SR Ca2+loading in EDL and soleus fibers to 81.5 ± 2.8 and 78.7 ± 4.0%, respectively, of controls. Clenbuterol also produced an ∼25% increase in passive leak of Ca2+ from the SR of the EDL and soleus fibers. These results indicate that clenbuterol has direct effects on fast- and slow-twitch skeletal muscle, in the absence of the β2-agonist pathway. The increased Ca2+ leak in the triad region may lead to excitation-contraction coupling damage in the soleus fibers and could also contribute to the anabolic effect of clenbuterol in vivo.


Sign in / Sign up

Export Citation Format

Share Document