scholarly journals The diacylglycerols dioctanoylglycerol and oleoylacetylglycerol enhance prostaglandin synthesis by inhibition of the lysophosphatide acyltransferase

1987 ◽  
Vol 247 (3) ◽  
pp. 773-777 ◽  
Author(s):  
M Goppelt-Strübe ◽  
H J Pfannkuche ◽  
D Gemsa ◽  
K Resch

Prostanoids are synthesized by resident macrophages upon stimulation with diacylglycerols. Oleoylacetylglycerol and dioctanoylglycerol induced prostaglandin E and thromboxane synthesis in a time- and concentration-dependent manner. Both diacylglycerols inhibited the lysophosphatide acyltransferase, which is the key enzyme in the reacylation of arachidonic acid. By this mechanism the pool of free arachidonic acid available for prostanoid synthesis is increased. Both diacylglycerols were able to inhibit the membrane-bound lysophosphatide acyltransferase by a direct interaction independent of protein kinase C. Thus lysophosphatide acyltransferase could be shown to be a new target of these diacylglycerols, known as activators of protein kinase C.

1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1993 ◽  
Vol 264 (5) ◽  
pp. F845-F853
Author(s):  
M. M. Friedlaender ◽  
D. Jain ◽  
Z. Ahmed ◽  
D. Hart ◽  
R. L. Barnett ◽  
...  

Previous work from this laboratory has identified an endothelin (ET) type A (ETA) receptor on cultured rat renal medullary interstitial cells (RMIC), coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), dihydropyridine-insensitive receptor-operated Ca2+ channels, and phospholipase A2. The current studies explored a role for ET stimulation of phosphatidylcholine-specific phospholipase D (PC-PLD) in intracellular signaling of this cell type. ET stimulated PLD activation, as measured by phosphatidic acid (PA) or phosphatidylethanol (PEt) accumulation, in a time- and concentration-dependent manner. Inhibition of diacylglycerol (DAG) kinase by ethylene glycol dioctanoate or 6-(2)4-[(4-fluorophenyl)-phenylmethylene]-1-piperadinyl]ethy l-7-methyl-5H - thiaxolo-[3,2-alpyrimidin]-5-one (R 59022) failed to blunt PA accumulation, indicating that PLD, and not DAG, was the source of PA. Inhibition of PA phosphohydrolase (PAP) by propranolol increased late accumulation of PA, suggesting that the prevailing metabolic flow was in the direction of PA to DAG. Phorbol 12-myristate 13-acetate (PMA) augmented ET-evoked PEt accumulation, whereas downregulation of protein kinase C (PKC) obviated agonist-induced PEt production. PMA augmentation of PLD activity proceeded independent of cytosolic free Ca2+ concentration. Ca2+ derived from either intracellular or extracellular sources enhanced ET-related PEt accumulation but was without effect in PKC-downregulated cells. Collectively, these observations indicate that ET stimulates PLD production in RMIC. PKC is the major regulator of this process, with Ca2+ playing a secondary, modulatory role. In addition, these data suggest that PC-PLD is coupled to the ETA receptor.


2009 ◽  
Vol 29 (6) ◽  
pp. 477-487
Author(s):  
Pochuen Shieh ◽  
Chih-Hung Lee ◽  
Ng Ling Yi ◽  
Chung-Ren Jan

The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca 2+]i) and viability was examined in Statens Seruminstitut rabbit cornea (SIRC) corneal epithelial cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1), respectively. Carvedilol at concentrations between 1 and 30 μM increased [Ca 2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was inhibited by suppression of protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca 2+ pump inhibitor), carvedilol-induced [Ca2+]i rise was reduced; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca 2+]i rise. Addition of the phospholipase C inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122; 2 μM) did not change carvedilol-induced [Ca2+]i rise. At concentrations between 5 and 70 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 20 μM carvedilol was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5—70 μM carvedilol. Collectively, in SIRC corneal epithelial cells, carvedilol-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca 2+ influx via protein kinase C-regulated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+-independent apoptosis in a concentration-dependent manner.


1997 ◽  
Vol 326 (3) ◽  
pp. 701-707 ◽  
Author(s):  
Irene LITOSCH

Protein kinase C (PKC) isoforms phosphorylated phospholipase C-β1 (PLC-β1) in vitro as follows: PKCα ≫ PKCϵ; not PKCζ. PLC-β3 was not phosphorylated by PKCα. G-protein βγ subunits inhibited the PKCα phosphorylation of PLC-β1 in a concentration-dependent manner. Half-maximal inhibition occurred with 500 nM βγ. G-protein βγ subunits also antagonized the PKCα-mediated inhibition of PLC-β1 enzymic activity. PKCα, in turn, inhibited the stimulation of PLC-β1 activity by βγ. There was little effect of PKCα on the stimulation of PLC-β1 by αq/11–guanosine 5′[γ-thio]triphosphate (GTP[S]). These findings demonstrate that G protein βγ subunits antagonize PKCα regulation of PLC-β1. Thus βγ subunits might have a role in modulating the negative feedback regulation of this signalling system by PKC.


1988 ◽  
Vol 116 (2) ◽  
pp. 231-239 ◽  
Author(s):  
M. S. Johnson ◽  
R. Mitchell ◽  
G. Fink

ABSTRACT We have investigated the role of protein kinase C (PKC) in LHRH-induced LH and FSH secretion and LHRH priming. Hemipituitary glands from pro-oestrous rats were incubated with agents known to affect PKC and with or without LHRH, during which time the secretion of gonadotrophins was measured. Phorbol esters and phospholipase C, activators of PKC, released LH and FSH in a concentration-dependent manner and potentiated the LHRH-induced secretion of gonadotrophins in parallel with their ability to release these hormones alone. Inhibitors of PKC had either no effect on LH release (1-(5-isoquinolinesulphonyl)-2-methylpiperazine hydrochloride) or they augmented LHRH-induced gonadotrophin release (polymyxin B and 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate). Neither the activators nor the inhibitors of PKC, when present with LHRH, caused any change in LHRH priming, even though the activators alone produced a release of gonadotrophins that showed a temporal pattern similar to that produced by LHRH priming. The profiles of effects on LH and FSH secretion were always qualitatively similar. These results show that PKC may be involved in general regulation of gonadotrophin release but that it is not important in acute responses to LHRH nor in LHRH self-priming. J. Endocr. (1988) 116, 231–239


1999 ◽  
Vol 18 (2) ◽  
pp. 91-96 ◽  
Author(s):  
I. Pala ◽  
A. Srinivasan ◽  
P. J. S. Vig ◽  
D. Desaiah

Calmodulin (CaM), a calcium-binding protein, is found in high concentrations in mammalian brain where it plays a pivotal role in a large number of cellular functions. Protein kinase C (PKC), a multifunctional cytosolic enzyme, in the presence of both Ca2+ and phospholipids, transduce extracellular signals into intracellu-lar events. Both CaM and PKC are partially involved in maintaining Ca2+ homeostasis in the cell. Any fluctuations in the intracel-lular Ca2+ can modulate cellular functions and may contribute to neuronal dysfunction. Hence, the present investigation was initiated to study the effects of some selected penicillium (naturally occurring tremorgenic) mycotoxins like secalonic acid, citreoviridin, and verruculogen on CaM activity, active conformation of CaM and PKC activity. Stimulation of CaM-deflcient bovine brain 3′-5′ phosphodieste rase (PDE) indicated CaM activity. The modification of CaM active conformation was studied by the binding of fluorescent probe N-phenyl-1-napthylamine (NPN) to CaM. Alterations in the fluorescence of dansyl-CaM was used to study the effect of these compounds on complex formation between CaM and PDE. Rat brain cytosolic PKC was studied using 32P-ATP as a measure of altered protein phosphorylation. The concentrations of mycotoxins used were in the range of 10 to 50 μM. All three mycotoxins inhibited CaM-stimulated PDE activity in a concentration-dependent manner. Citreoviridin and secalonic acid inhibited NPN fluorescence and Ca2+-dependent complex formation of dansyl-CaM and PDE. The IC50 values for NPN fluorescence of citreoviridin and secalonic acid were 13 μM and 19 μM respectively. However, verruculogen showed little effect on NPN fluorescence and the Ca2+-dependent complex formation of dansyl-CaM and PDE. These mycotoxins also inhibited PKC activity in a concentration-dependent manner with IC50 values of 19.8, 25.7, and 38.4 μM for secalonic acid, citreoviridin, and verruculogen, respectively. The results of our study suggest that these mycotoxins at very low concentrations are interacting with CaM and PKC. Such an effect could lead to impairment of neurotransmission and result in neurotoxicity.


2008 ◽  
Vol 36 (03) ◽  
pp. 603-613 ◽  
Author(s):  
Yu-Min Yang ◽  
Xing-Xiang Wang ◽  
Jun-Zhu Chen ◽  
Shi-Jun Wang ◽  
Hu Hu ◽  
...  

Inappropriate platelet activation is the key point of thrombogenesis. The aim of the present study was to investigate the effects of resveratrol (RESV), a compound extracted from the Chinese medicinal herb Polygonum cuspidatum sieb et Zucc, on the platelet activation induced by adenosine diphosphate (ADP) and its possible mechanism. The percentage of platelet aggregation and surface P-selectin-positive platelets, and the activity of protein kinase C (PKC) of platelet were observed with platelet aggregometer, flow cytometry and phosphorimaging system, respectively. RESV at 25, 50 and 100 μM showed anti-platelet aggregation and inhibition of surface P-selectin-positive platelets in a concentration-dependent manner. RESV (50 μM) inhibited the activity of PKC in the membrane fraction of platelets and decreased the percentage of membrane associated PKC activity in total PKC activity. Moreover, DL-erythro-1,3-Dihydroxy-2-aminooctadecane, an elective protein kinase C inhibitor (PKCI), and RESV had additive effects of inhibiting the percentage of platelet aggregation and surface P-selectin-positive platelets. It is suggested that RESV may inhibit platelet aggregation, the percentage of surface P-selectin-positive platelets and subsequent thrombus formation. The mechanisms may be partly relative to the decrease of the activity of PKC of platelets.


1992 ◽  
Vol 263 (6) ◽  
pp. C1208-C1215 ◽  
Author(s):  
T. D. Noland ◽  
C. E. Carter ◽  
H. R. Jacobson ◽  
M. D. Breyer

In cultured cortical collecting duct (CCD) cells, exogenous prostaglandin E2 (PGE2) inhibited arginine vasopressin (AVP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production in a concentration-dependent manner. Although pertussis toxin (PT, 500 ng/ml) alone did not reverse the PGE2-dependent inhibition, PT and staurosporine, a protein kinase C inhibitor, together partially reversed the effect of exogenous PGE2. In contrast, PT completely reversed the inhibition of AVP-dependent cAMP production by sulprostone. These data suggest that exogenous PGE2 can inhibit AVP-stimulated cAMP production and that the inhibitory effects of PGE2 are mediated by staurosporine- and PT-sensitive component(s). Short-term (15-240 min) incubation with phorbol 12-myristate 13-acetate (PMA, 10(-7) M) inhibited PGE2-stimulated cAMP production. Long-term (20 h) incubation with PMA augmented PGE2-stimulated cAMP production. These data provide evidence for the maintenance of a PT-sensitive PGE2-dependent inhibitory pathway of cAMP production in cultured CCD cells. In addition, data are presented that support an inhibitory role for protein kinase C in the effects of PGE2 on the metabolism of cAMP in these cells.


1989 ◽  
Vol 257 (4) ◽  
pp. L253-L258 ◽  
Author(s):  
C. L. Myers ◽  
J. S. Lazo ◽  
B. R. Pitt

Acute exposure (30 min-1 h) of bovine pulmonary artery endothelial cells in culture (BPAEC) to phorbol myristate acetate (PMA 10(-10)-10(-6) M) resulted in concentration-dependent decrement in serotonin (5-HT) uptake. Neither cell viability (trypan blue exclusion or release of deoxyglucose) nor activity of another plasma membrane function, angiotensin-converting enzyme activity, were affected. A decrease in 5-HT uptake was also noted with phorbol 12,13 dibutyrate and mezerein, but not with 4-alpha-phorbol 12,13 didecanoate, which does not stimulate protein kinase C (PKC). Inhibition of 5-HT uptake by PMA (160 nM) was reversed in a concentration-dependent manner by pretreatment of cells with the PKC inhibitor staurosporine (3-100 nM). BPAEC were treated with PMA (160 nM) for 1 h, and activities of PKC in cytosolic and membrane compartments were determined. PMA did not significantly affect total cellular PKC activity but resulted in a translocation of activity from cytosol to membrane (control membrane activity 67 +/- 4%; PMA-treated membrane activity 97 +/- 1% of total cellular PKC). Thus we propose that translocation of PKC from cytosol to membrane results in inhibition of 5-HT uptake by BPAEC.


Sign in / Sign up

Export Citation Format

Share Document