scholarly journals The purification and properties of myo-inositol monophosphatase from bovine brain

1988 ◽  
Vol 249 (3) ◽  
pp. 883-889 ◽  
Author(s):  
N S Gee ◽  
C I Ragan ◽  
K J Watling ◽  
S Aspley ◽  
R G Jackson ◽  
...  

1. An inositol monophosphatase was purified to homogeneity from bovine brain. 2. The enzyme is a dimer of subunit Mr 29,000. 3. The enzyme hydrolyses both enantiomers of myo-inositol 1-phosphate and both enantiomers of myo-inositol 4-phosphate, but has no activity towards inositol bisphosphates, inositol trisphosphates or inositol 1,3,4,5-tetrakisphosphate. 4. Several non-inositol-containing monophosphates are also substrates. 5. The enzyme requires Mg2+ for activity, and Zn2+ supports activity to a small extent. 6. Other bivalent cations (including Zn2+) are inhibitors, competitive with Mg2+. 7. Phosphate, but not inositol, is an inhibitor competitive with substrate. 8. Li+ inhibits hydrolysis of inositol 1-phosphate and inositol 4-phosphate uncompetitively with different apparent Ki values (1.0 mM and 0.26 mM respectively).

1988 ◽  
Vol 253 (2) ◽  
pp. 387-394 ◽  
Author(s):  
P V Attwood ◽  
J B Ducep ◽  
M C Chanal

myo-Inositol-1-phosphatase from bovine brain was purified over 2000-fold. The native enzyme has a Mr of 59,000, and on SDS/polyacrylamide-gel electrophoresis the subunit Mr was 31,000. Thus the native enzyme is a dimer of two apparently identical subunits. The enzyme, purified to a specific activity of more than 300 units/mg of protein (1 unit of enzyme activity corresponds to the release of 1 mumol of Pi/h at 37 degrees C), catalysed the hydrolysis of a variety of phosphorylated compounds, the best one, in terms of V/Km, being D-myo-inositol 1-phosphate. Kinetic constants of compounds tested, including both isomers of glycerophosphate and two deoxy forms of beta-glycerophosphate, were measured. They show the importance of the two hydroxyl groups which are adjacent to the phosphate in myo-inositol 1-phosphate. With a wide variety of substrates Li+ was found to be an uncompetitive inhibitor whose Ki varied with substrate structure.


1989 ◽  
Vol 264 (3) ◽  
pp. 793-798 ◽  
Author(s):  
N S Gee ◽  
S Howell ◽  
G Ryan ◽  
C I Ragan

A monoclonal IgG2b(K) antibody, G-2A4, has been generated against bovine brain myo-inositol monophosphatase (EC 3.1.3.25). The identity of the antigen recognized by the antibody was established by using e.l.i.s.a. and Western blotting procedures, and by immunoprecipitation of enzyme activity from crude brain supernatant. In addition, the hydrolysis of Ins1P by crude brain extract was inhibited by up to 83% by the pure antibody. Under identical conditions, the hydrolysis of Ins(1,4)P2 was unaffected. An immunoadsorbent column containing monoclonal antibody G-2A4 covalently attached to CNBr-activated Sepharose 4B has been used for rapid purification of the brain enzyme. Elution conditions have been optimized to allow isolation of the enzyme in high yield (54%) with full retention of column-binding capacity. The enzyme was electrophoretically homogeneous, Mr 30,000 and of higher specific activity than that purified conventionally. Chromatography of the pure enzyme on high resolution ion-exchange columns revealed some charge heterogeneity, possibly indicative of some type of post-translational modification. The immunoadsorbent column has also been used to purify the bovine kidney cortex enzyme to homogeneity. Partial proteolytic fragmentation patterns of the brain and kidney enzymes using endoprotease glu-C were identical, suggesting that they are almost certainly products of the same gene.


1988 ◽  
Vol 253 (3) ◽  
pp. 777-782 ◽  
Author(s):  
N S Gee ◽  
G G Reid ◽  
R G Jackson ◽  
R J Barnaby ◽  
C I Ragan

Inositol-1,4-bisphosphatase has been purified 13,000-fold from bovine brain supernatant. The enzyme is monomeric, with an apparent subunit Mr of 40,000. Maximal hydrolytic rates were observed in Tris buffer, pH 7.8, in the presence of 9 mM-Mg2+. The enzyme acted as a 1-phosphatase, hydrolysing both inositol 1,4-bisphosphate [Ins(1,4)P2] (Km 0.04 mM) and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] (Km 0.5 mM) to inositol 4-phosphate and inositol 3,4-bisphosphate respectively. Li+ inhibited the hydrolysis of both substrates in an uncompetitive manner, with apparent Ki values of 9.63 mM and 0.46 mM for Ins(1,4)P2 and Ins(1,3,4)P3 respectively.


1970 ◽  
Vol 119 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Yew Phew See ◽  
P. S. Fitt

1. Polynucleotide phosphorylase has been isolated and partially purified from crude preparations of guinea-pig liver nuclei. 2. The enzyme is particulate and associated with RNA and lipids characteristic of membranes. 3. It has phosphorolysis and exchange activities, but the latter may be due to a contaminating enzyme. 4. The phosphorolysis activity is dependent on bivalent cations, preferably Mg2+, has a pH optimum between 8.6 and 9.2 and is inhibited by potassium chloride and sodium chloride. 5. The enzyme catalyses phosphorolysis of poly A, poly C, poly U, rRNA and tRNA. Poly G is only phosphorolysed to a very small extent and DNA is not a substrate. 6. The enzyme appears to lack nucleoside diphosphate polymerization activity.


1987 ◽  
Vol 242 (2) ◽  
pp. 517-524 ◽  
Author(s):  
K E Ackermann ◽  
B G Gish ◽  
M P Honchar ◽  
W R Sherman

In cerebral cortex of rats treated with increasing doses of LiCl, the relative concentrations of Ins(1)P, Ins(4)P and Ins(5)P (when InsP is a myo-inositol phosphate) are approx. 10:1:0.2 at all doses. In rats treated with LiCl followed by increasing doses of pilocarpine a similar relationship occurs. myo-Inositol-1-phosphatase (InsP1ase) from bovine brain hydrolyses Ins(1)P, Ins(4)P and Ins(5)P at comparable rates, and these substrates have similar Km values. The hydrolysis of Ins(4)P is inhibited by Li+ to a greater degree than is hydrolysis of Ins(1)P and Ins(5)P. D-Ins(1,4,5)P3 and D-Ins(1,4)P2 are neither substrates nor inhibitors of InsP1ase. A dialysed high-speed supernatant of rat brain showed a greater rate of hydrolysis of Ins(1)P than of D-Ins(1,4)P2 and a lower sensitivity of the bisphosphate hydrolysis to LiCl, as compared with the monophosphate. That enzyme preparation produced Ins(4)P at a greater rate than Ins(1)P when D-Ins(1,4)P2 was the substrate. The amount of D-Ins(3)P [i.e. L-Ins(1)P, possibly from D-Ins(1,3,4)P3] is only 11% of that of D-Ins(1)P on stimulation with pilocarpine in the presence of Li+. DL-Ins(1,4)P2 was hydrolysed by InsP1ase to the extent of about 50%; both Ins(4)P and Ins(1)P are products, the former being produced more rapidly than the latter; apparently L-Ins(1,4)P2 is a substrate for InsP1ase. Li+, but not Ins(2)P, inhibited the hydrolysis of L-Ins(1,4)P2. The following were neither substrates nor inhibitors of InsP1ase; Ins(1,6)P2, Ins(1,2)P2, Ins(1,2,5,6)P4, Ins(1,2,4,5,6)P5, Ins(1,3,4,5,6)P5 and phytic acid. myo-Inositol 1,2-cyclic phosphate was neither substrate nor inhibitor of InsP1ase. We conclude that the 10-fold greater tissue contents of Ins(1)P relative to Ins(4)P in both stimulated and non-stimulated rat brain in vivo are the consequence of a much larger amount of PtdIns metabolism than polyphosphoinositide metabolism under these conditions.


1990 ◽  
Vol 265 (11) ◽  
pp. 5946-5949
Author(s):  
R E Diehl ◽  
P Whiting ◽  
J Potter ◽  
N Gee ◽  
C I Ragan ◽  
...  

1993 ◽  
Vol 289 (2) ◽  
pp. 453-461 ◽  
Author(s):  
M Hrmova ◽  
G B Fincher

Three (1->3)-beta-D-glucan glucanohydrolase (EC 3.2.1.39) isoenzymes GI, GII and GIII were purified from young leaves of barley (Hordeum vulgare) using (NH4)2SO4 fractional precipitation, ion-exchange chromatography, chromatofocusing and gel-filtration chromatography. The three (1->3)-beta-D-glucanases are monomeric proteins of apparent M(r)32,000 with pI values in the range 8.8-10.3. N-terminal amino-acid-sequence analyses confirmed that the three isoenzymes represent the products of separate genes. Isoenzymes GI and GII are less stable at elevated temperatures and are active over a narrower pH range than is isoenzyme GIII, which is a glycoprotein containing 20-30 mol of hexose equivalents/mol of enzyme. The preferred substrate for the enzymes is laminarin from the brown alga Laminaria digitata, an essentially linear (1->3)-beta-D-glucan with a low degree of glucosyl substitution at 0-6 and a degree of polymerization of approx. 25. The three enzymes are classified as endohydrolases, because they yield (1->3)-beta-D-oligoglucosides with degrees of polymerization of 3-8 in the initial stages of hydrolysis of laminarin. Kinetic analyses indicate apparent Km values in the range 172-208 microM, kcat. constants of 36-155 s-1 and pH optima of 4.8. Substrate specificity studies show that the three isoenzymes hydrolyse substituted (1->3)-beta-D-glucans with degrees of polymerization of 25-31 and various high-M(r), substituted and side-branched fungal (1->3;1->6)-beta-D-glucans. However, the isoenzymes differ in their rates of hydrolysis of a (1->3;1->6)-beta-D-glucan from baker's yeast and their specific activities against laminarin vary significantly. The enzymes do not hydrolyse (1->3;1->4)-beta-D-glucans, (1->6)-beta-D-glucan, CM-cellulose, insoluble (1->3)-beta-D-glucans or aryl beta-D-glycosides.


1989 ◽  
Vol 258 (1) ◽  
pp. 23-32 ◽  
Author(s):  
I H Batty ◽  
A J Letcher ◽  
S R Nahorski

1. Basal and carbachol-stimulated accumulations of isomeric [3H]inositol mono-, bis-, tris- and tetrakis-phosphates were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. 2. In control samples the major [3H]inositol phosphates detected were co-eluted on h.p.l.c. with Ins(1)P, Ins(4)P (inositol 1- and 4-monophosphate respectively), Ins(1,4)P2 (inositol 1,4-bisphosphate), Ins(1,4,5)P3 (inositol 1,4,5-tris-phosphate) and Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate). 3. After stimulation to steady state with carbachol, accumulation of each of these products was markedly increased. 4. Agonist stimulation, however, also evoked much more dramatic increased accumulations of a second [3H]inositol trisphosphate, which was co-eluted on h.p.l.c. with authentic Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) and of three further [3H]inositol bisphosphates ([3H]InsP2(s]. 5. Examination of the latter by chemical degradation by periodate oxidation and/or h.p.l.c. allowed identification of these as [3H]Ins(1,3)P2, [3H]Ins(3,4)P2 and [3H]Ins(4,5)P2 (inositol 1,3-, 3,4- and 4,5-bisphosphates respectively), which respectively accounted for about 22%, 8% and 3% of total [3H]InsP2 in extracts from stimulated tissue slices. 6. By using a h.p.l.c. method which clearly resolves Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 (inositol 1,3,4,6-tetrakisphosphate), only the former isomer could be detected in extracts from either control or stimulated tissue slices. Similarly, [3H]inositol pentakis- and hexakis-phosphates were not detectable either in the presence or absence of carbachol under the radiolabelling conditions described. 7. The catabolism of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 by cell-free preparations from cerebral cortex was also studied. 8. In the presence of Mg2+, [3H]Ins(1,4,5)P3 was specifically dephosphorylated via [3H]Ins(1,4)P2 and [3H]Ins(4)P to free [3H]inositol, whereas [3H]Ins(1,3,4)P3 was degraded via [3H]Ins(3,4)P2 and, to a lesser extent, via [3H]Ins(1,3)P2 to D- and/or L-[3H]Ins(1)P and [3H]inositol. 9. In the presence of EDTA, hydrolysis of [3H]Ins(1,4,5)P3 was greater than or equal to 95% inhibited, whereas [3H]Ins(1,3,4)P3 was still degraded, but yielded only a single [3H]InsP2 identified as [3H]Ins(1,3)P2. 10. The significance of these observations with cell-free preparations is discussed in relation to the proportions of the separate isomeric [3H]inositol phosphates measured in stimulated tissue slices.


Sign in / Sign up

Export Citation Format

Share Document