phosphorylated compounds
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
Dhiraj Dokwal ◽  
Jean-Christophe Cocuron ◽  
Ana Paula Alonso ◽  
Rebecca Dickstein

Abstract Symbiotic nitrogen fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N2-fixing legumes have higher demand of phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to four weeks of P stress. First, GC-MS based untargeted metabolomics employed initially revealed changes in metabolic profile of nodules with increased levels of amino acids and sugars and decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in overall plant. Our results showed drastic reduction in levels of organic acids and phosphorylated compounds in -P leaves with moderate reduction in -P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N2-fixation in M. truncatula is mediated through N feedback mechanism that in parallel is related to C and P metabolism.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 268
Author(s):  
Sachio Yamamoto ◽  
Shoko Yano ◽  
Mitsuhiro Kinoshita ◽  
Shigeo Suzuki

An improved method for the online preconcentration, derivatization, and separation of phosphorylated compounds was developed based on the affinity of a Phos-tag acrylamide gel formed at the intersection of a polydimethylsiloxane/glass multichannel microfluidic chip toward these compounds. The acrylamide solution comprised Phos-tag acrylamide, acrylamide, and N,N-methylene-bis-acrylamide, while 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] was used as a photocatalytic initiator. The Phos-tag acrylamide gel was formed around the channel crossing point via irradiation with a 365 nm LED laser. The phosphorylated peptides were specifically concentrated in the Phos-tag acrylamide gel by applying a voltage across the gel plug. After entrapment of the phosphorylated compounds in the Phos-tag acrylamide gel, 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) was introduced to the gel for online derivatization of the concentrated phosphorylated compounds. The online derivatized DTAF-labeled phosphorylated compounds were eluted by delivering a complex of phosphate ions and ethylenediamine tetraacetic acid as the separation buffer. This method enabled sensitive analysis of the phosphorylated peptides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oliver R. Maguire ◽  
Iris B. A. Smokers ◽  
Wilhelm T. S. Huck

AbstractThe incorporation of orthophosphate from scarce geochemical sources into the organic compounds essential for life under mild conditions is a fundamental challenge for prebiotic chemistry. Here we report a prebiotic system capable of overcoming this challenge by taking inspiration from extant life’s recycling of orthophosphate via its conversion into kinetically stable thermodynamically activated (KSTA) nucleotide triphosphates (e.g. ATP). We separate the activation of orthophosphate from its transfer to organic compounds by, crucially, first accumulating a KSTA phosphoramidate. We use cyanate to activate orthophosphate in aqueous solution under mild conditions and then react it with imidazole to accumulate the KSTA imidazole phosphate. In a paste, imidazole phosphate phosphorylates all the essential building blocks of life. Integration of this chemistry into a wet/dry cycle enables the continuous recycling of orthophosphate and the accretion of phosphorylated compounds. This system functions even at low reagent concentrations due to solutes concentrating during evaporation. Our system demonstrates a general strategy for how to maximise the usage of scarce resources based upon cycles which accumulate and then release activated intermediates.


2021 ◽  
Author(s):  
Thomas Haas ◽  
Stephan Mundinger ◽  
Danye Qiu ◽  
Nikolaus Jork ◽  
Kevin Ritter ◽  
...  

Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. As 18O can be derived from heavy water (H218O), it is comparably cheap and particularly suited for labelling of phosphorylated compounds, provided the introduction is straight-forward and phosphate neutral loss in the ion source can be avoided. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2‑phosphoramidite reagents. This flexible toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including - but not limited to - nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95% and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices, such as mammalian cell lysates, slime mold and plant samples. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionization triple quadrupole mass spectrometry.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252377
Author(s):  
Elizabeth Smiley-Moreno ◽  
Douglas Smith ◽  
Jieh-Juen Yu ◽  
Phuong Cao ◽  
Bernard P. Arulanandam ◽  
...  

Genomic sequence analysis of Acinetobacter baumannii revealed the presence of a putative Acid Phosphatase (AcpA; EC 3.1.3.2). A plasmid construct was made, and recombinant protein (rAcpA) was expressed in E. coli. PAGE analysis (carried out under denaturing/reducing conditions) of nickel-affinity purified protein revealed the presence of a near-homogeneous band of approximately 37 kDa. The identity of the 37 kDa species was verified as rAcpA by proteomic analysis with a molecular mass of 34.6 kDa from the deduced sequence. The dependence of substrate hydrolysis on pH was broad with an optimum observed at 6.0. Kinetic analysis revealed relatively high affinity for PNPP (Km = 90 μM) with Vmax, kcat, and Kcat/Km values of 19.2 pmoles s-1, 4.80 s-1(calculated on the basis of 37 kDa), and 5.30 x 104 M-1s-1, respectively. Sensitivity to a variety of reagents, i.e., detergents, reducing, and chelating agents as well as classic acid phosphatase inhibitors was examined in addition to assessment of hydrolysis of a number of phosphorylated compounds. Removal of phosphate from different phosphorylated compounds is supportive of broad, i.e., ‘nonspecific’ substrate specificity; although, the enzyme appears to prefer phosphotyrosine and/or peptides containing phosphotyrosine in comparison to serine and threonine. Examination of the primary sequence indicated the absence of signature sequences characteristic of Type A, B, and C nonspecific bacterial acid phosphatases.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 234
Author(s):  
Fernanda R. Castro-Moretti ◽  
Jean-Christophe Cocuron ◽  
Mariana C. Cia ◽  
Thais R. Cataldi ◽  
Carlos A. Labate ◽  
...  

Ratoon stunt (RS) is a worldwide disease that reduces biomass up to 80% and is caused by the xylem-dwelling bacterium Leifsonia xyli subsp. xyli. This study identified discriminant metabolites between a resistant (R) and a susceptible (S) sugarcane variety at the early stages of pathogen colonization (30 and 120 days after inoculation—DAI) by untargeted and targeted metabolomics of leaves and xylem sap using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Bacterial titers were quantified in sugarcane extracts at 180 DAI through real-time polymerase chain reaction. Bacterial titers were at least four times higher on the S variety than in the R one. Global profiling detected 514 features in the leaves and 68 in the sap, while 119 metabolites were quantified in the leaves and 28 in the sap by targeted metabolomics. Comparisons between mock-inoculated treatments indicated a greater abundance of amino acids in the leaves of the S variety and of phenolics, flavonoids, and salicylic acid in the R one. In the xylem sap, fewer differences were detected among phenolics and flavonoids, but also included higher abundances of the signaling molecule sorbitol and glycerol in R. Metabolic changes in the leaves following pathogen inoculation were detected earlier in R than in S and were mostly related to amino acids in R and to phosphorylated compounds in S. Differentially represented metabolites in the xylem sap included abscisic acid. The data represent a valuable resource of potential biomarkers for metabolite-assisted selection of resistant varieties to RS.


Talanta ◽  
2021 ◽  
Vol 224 ◽  
pp. 121806
Author(s):  
Sagrario Torres-Cartas ◽  
Susana Meseguer-Lloret ◽  
Carmen Gómez-Benito ◽  
Mónica Catalá-Icardo ◽  
Ernesto F. Simó-Alfonso ◽  
...  

2020 ◽  
Vol 477 (11) ◽  
pp. 2095-2114
Author(s):  
Rosario A. Muñoz-Clares ◽  
Lilian González-Segura ◽  
Javier Andrés Juárez-Díaz ◽  
Carlos Mújica-Jiménez

Activation of phosphoenolpyruvate carboxylase (PEPC) enzymes by glucose 6-phosphate (G6P) and other phospho-sugars is of major physiological relevance. Previous kinetic, site-directed mutagenesis and crystallographic results are consistent with allosteric activation, but the existence of a G6P-allosteric site was questioned and competitive activation—in which G6P would bind to the active site eliciting the same positive homotropic effect as the substrate phosphoenolpyruvate (PEP)—was proposed. Here, we report the crystal structure of the PEPC-C4 isozyme from Zea mays with G6P well bound into the previously proposed allosteric site, unambiguously confirming its existence. To test its functionality, Asp239—which participates in a web of interactions of the protein with G6P—was changed to alanine. The D239A variant was not activated by G6P but, on the contrary, inhibited. Inhibition was also observed in the wild-type enzyme at concentrations of G6P higher than those producing activation, and probably arises from G6P binding to the active site in competition with PEP. The lower activity and cooperativity for the substrate PEP, lower activation by glycine and diminished response to malate of the D239A variant suggest that the heterotropic allosteric activation effects of free-PEP are also abolished in this variant. Together, our findings are consistent with both the existence of the G6P-allosteric site and its essentiality for the activation of PEPC enzymes by phosphorylated compounds. Furthermore, our findings suggest a central role of the G6P-allosteric site in the overall kinetics of these enzymes even in the absence of G6P or other phospho-sugars, because of its involvement in activation by free-PEP.


The Analyst ◽  
2017 ◽  
Vol 142 (18) ◽  
pp. 3416-3423 ◽  
Author(s):  
Sachio Yamamoto ◽  
Miyuki Himeno ◽  
Masaya Kobayashi ◽  
Miki Akamatsu ◽  
Ryosuke Satoh ◽  
...  

A method was developed for the specific entrapment and separation of phosphorylated compounds using a Phos-tag polyacrylamide gel fabricated at the channel crossing point of a microfluidic electrophoresis chip.


Sign in / Sign up

Export Citation Format

Share Document