scholarly journals Theoretical treatment of tight-binding inhibition of an enzyme. Ribonuclease inhibitor as special case

1988 ◽  
Vol 253 (2) ◽  
pp. 517-522 ◽  
Author(s):  
J M Fominaya ◽  
J M García-Segura ◽  
M Ferreras ◽  
J G Gavilanes

A general treatment of very tight-binding inhibition is described. It was applied to purified endogenous RNAase inhibitor from rat testis. This treatment discriminates among the different types of inhibition and allows for calculation of the inhibition parameters. When very tight-binding inhibitions are studied at similar molar concentrations of both enzyme and inhibitor, a further approach is required. This is also described and applied to the RNAase inhibitor. A Ki value of 3.2 x 10(-12) M was found for this inhibitor protein. On the basis of this result, it was considered inappropriate to classify this type of inhibitor in terms of competitive or non-competitive, as has been done for such inhibitors so far. Functional consequences of this analysis are discussed for the RNAase-RNAase inhibitor system.

2020 ◽  
Author(s):  
Julia Villalva ◽  
Belén Nieto-Ortega ◽  
Manuel Melle-Franco ◽  
Emilio Pérez

The motion of molecular fragments in close contact with atomically flat surfaces is still not fully understood. Does a more favourable interaction imply a larger barrier towards motion even if there are no obvious minima? Here, we use mechanically interlocked rotaxane-type derivatives of SWNTs (MINTs) featuring four different types of macrocycles with significantly different affinities for the SWNT thread as models to study this problem. Using molecular dynamics, we find that there is no direct correlation between the interaction energy of the macrocycle with the SWNT and its ability to move along or around it. Density functional tight-binding calculations reveal small (<2.5 Kcal·mol-1) activation barriers, the height of which correlates with the commensurability of the aromatic moieties in the macrocycle with the SWNT. Our results show that macrocycles in MINTs rotate and translate freely around and along SWNTs at room temperature, with an energetic cost lower than the rotation around the C−C bond in ethane.<br>


2021 ◽  
Vol 139 ◽  
pp. 111664
Author(s):  
Haiyang Yang ◽  
Xueyan Li ◽  
Gang Li ◽  
Huating Huang ◽  
Wenning Yang ◽  
...  

Author(s):  
Hong-Song Zhu ◽  
Jinguo Zhai ◽  
Guo-Yan Zhou

Abstract Based on the unified theory of tubesheet (TS) design for fixed TS heat exchangers (HEX), floating head and U-tube HEX presented in Part I and Part II, theoretical and numerical comparisons with ASME method are performed in this paper as Part III. Theoretical comparison shows that ASME method can be obtained from the special case of the simplified mechanical model of the unified theory. Numerical Comparison results indicate that predictions given by the unified theory agree well with finite element analysis (FEA), while ASME results are not accurate or not correct. Therefore, it is concluded that the unified theory deals with different types of HEX in equal detail with confidence to predict design stresses.


2006 ◽  
Vol 963 ◽  
Author(s):  
Vitor R. Coluci ◽  
Socrates O. Dantas ◽  
Ado Jorio ◽  
Douglas s Galvao

ABSTRACTEletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.


Sign in / Sign up

Export Citation Format

Share Document