ctp synthase
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christos Andreadis ◽  
Tianhao Li ◽  
Ji-Long Liu

AbstractCTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase’s capacity to be epigenetically modified by ubiquitin or be affected by the ubiquitination state of the cell, showed that CTPS is immunoprecipitated with ubiquitin, and that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is significant for the regulation of cytoophidium morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of CTPS filaments.


2021 ◽  
Author(s):  
Zheng Wu ◽  
Ji-Long Liu

ABSTRACTCTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. Moreover, we show that Myc level is low in these two types of cells, supporting the idea that Myc regulates cytoophidium assembly. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.


2021 ◽  
Author(s):  
Jingnan Liu ◽  
Yuanbing Zhang ◽  
Youfang Zhou ◽  
Qiao-Qi Wang ◽  
Kang Ding ◽  
...  

ABSTRACTTissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here, we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Interestingly, loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, leads to downregulated Collagen-Integrin signaling, weakened adipocyte adhesion, and defective adipose architecture. Strikingly, CTPS specifically binds with Integrin subunit α2, which influences Integrin function and Collagen IV deposition. cytoophidia promote Collagen IV mRNA expression and thus its extracellular deposition to strengthen adipocyte adhesion. Remarkably, Collagen IV-Integrin signaling reciprocally regulates cytoophidium formation at a post-translational level. Together, we demonstrate that a positive feedback signaling loop containing both cytoophidia and Integrin adhesion complex couples tissue architecture and metabolism in the fly adipose.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jesse M Hansen ◽  
Avital Horowitz ◽  
Eric M Lynch ◽  
Daniel P Farrell ◽  
Joel Quispe ◽  
...  

Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.


2021 ◽  
Vol 21 ◽  
pp. S91-S92
Author(s):  
Christina Pfeiffer ◽  
Arnold Bolomsky ◽  
Niklas Zojer ◽  
Martin Schreder ◽  
Hélène Asnagli ◽  
...  

2021 ◽  
pp. 112838
Author(s):  
Youfang Zhou ◽  
Jingnan Liu ◽  
Yuanbing Zhang ◽  
Ji-Long Liu

2021 ◽  
Author(s):  
Jesse M Hansen ◽  
Avital Horowitz ◽  
Eric M Lynch ◽  
Daniel P Farrell ◽  
Joel Quispe ◽  
...  

ABSTRACTMany metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or hyper-assembly mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.


2021 ◽  
Vol 118 (30) ◽  
pp. e2026621118
Author(s):  
Xian Zhou ◽  
Chen-Jun Guo ◽  
Chia-Chun Chang ◽  
Jiale Zhong ◽  
Huan-Huan Hu ◽  
...  

Cytidine triphosphate synthase (CTPS), which comprises an ammonia ligase domain and a glutamine amidotransferase domain, catalyzes the final step of de novo CTP biosynthesis. The activity of CTPS is regulated by the binding of four nucleotides and glutamine. While glutamine serves as an ammonia donor for the ATP-dependent conversion of UTP to CTP, the fourth nucleotide GTP acts as an allosteric activator. Models have been proposed to explain the mechanisms of action at the active site of the ammonia ligase domain and the conformational changes derived by GTP binding. However, actual GTP/ATP/UTP binding modes and relevant conformational changes have not been revealed fully. Here, we report the discovery of binding modes of four nucleotides and a glutamine analog 6-diazo-5-oxo-L-norleucine in Drosophila CTPS by cryo–electron microscopy with near-atomic resolution. Interactions between GTP and surrounding residues indicate that GTP acts to coordinate reactions at both domains by directly blocking ammonia leakage and stabilizing the ammonia tunnel. Additionally, we observe the ATP-dependent UTP phosphorylation intermediate and determine interacting residues at the ammonia ligase. A noncanonical CTP binding at the ATP binding site suggests another layer of feedback inhibition. Our findings not only delineate the structure of CTPS in the presence of all substrates but also complete our understanding of the underlying mechanisms of the allosteric regulation and CTP synthesis.


Author(s):  
Jinmi Yoon ◽  
Lae‐Hyeon Cho ◽  
Sung‐Ryul Kim ◽  
Win Tun ◽  
Xin Peng ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Li ◽  
Hui-Xia Zhang ◽  
Wen-Di Luo ◽  
Christopher Wai Kei Lam ◽  
Cai-Yun Wang ◽  
...  

Remdesivir (RDV) has generated much anticipation for its moderate effect in treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the unsatisfactory survival rates of hospitalized patients limit its application to the treatment of coronavirus disease 2019 (COVID-19). Therefore, improvement of antiviral efficacy of RDV is urgently needed. As a typical nucleotide analog, the activation of RDV to bioactive triphosphate will affect the biosynthesis of endogenous ribonucleotides (RNs) and deoxyribonucleotides (dRNs), which are essential to RNA and DNA replication in host cells. The imbalance of RN pools will inhibit virus replication as well. In order to investigate the effects of RDV on cellular nucleotide pools and on RNA transcription and DNA replication, cellular RNs and dRNs concentrations were measured by the liquid chromatography-mass spectrometry method, and the synthesis of RNA and DNA was monitored using click chemistry. The results showed that the IC50 values for BEAS-2B cells at exposure durations of 48 and 72 h were 25.3 ± 2.6 and 9.6 ± 0.7 μM, respectively. Ten (10) μM RDV caused BEAS-2B arrest at S-phase and significant suppression of RNA and DNA synthesis after treatment for 24 h. In addition, a general increase in the abundance of nucleotides and an increase of specific nucleotides more than 2 folds were observed. However, the variation of pyrimidine ribonucleotides was relatively slight or even absent, resulting in an obvious imbalance between purine and pyrimidine ribonucleotides. Interestingly, the very marked disequilibrium between cytidine triphosphate (CTP) and cytidine monophosphate might result from the inhibition of CTP synthase. Due to nucleotides which are also precursors for the synthesis of viral nucleic acids, the perturbation of nucleotide pools would block viral RNA replication. Considering the metabolic vulnerability of endogenous nucleotides, exacerbating the imbalance of nucleotide pools imparts great promise to enhance the efficacy of RDV, which possibly has special implications for treatment of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document