scholarly journals The relationship between changes in lipid fuel availability and tissue fructose 2,6-bisphosphate concentrations and pyruvate dehydrogenase complex activities in the fed state

1988 ◽  
Vol 256 (3) ◽  
pp. 935-939 ◽  
Author(s):  
T J French ◽  
A W Goode ◽  
M J Holness ◽  
P A MacLennan ◽  
M C Sugden

An elevated concentration of non-esterified fatty acids in the fed state elicited inhibition of cardiac, but not hepatic, pyruvate dehydrogenase complex (PDH). There was a modest decline in fructose 2,6-bisphosphate (Fru-2,6-P2) concentration in heart, and, to a lesser extent, in liver. Surgical stress decreased PDH activities and Fru-2,6-P2 concentrations in both heart and liver. Only the former response was abolished if postoperative lipolysis was inhibited. Surgery also decreased the [Fru-2,6-P2] in gastrocnemius: this response was abolished if lipolysis was inhibited.

1985 ◽  
Vol 232 (1) ◽  
pp. 255-259 ◽  
Author(s):  
M J Holness ◽  
T N Palmer ◽  
M C Sugden

Effects of administration of tri-iodothyronine (T3) on activities of cardiac and renal pyruvate dehydrogenase complex (active form, PDHa) were investigated. In fed rats, T3 treatment did not affect cardiac or renal PDHa activity, although blood non-esterified fatty acid and ketone-body concentrations were increased. Starvation (48 h) of both control and T3-treated rats resulted in similar increases in the steady-state concentrations of fatty acids and ketone bodies, but inactivation of cardiac and renal pyruvate dehydrogenase complex activities was diminished by T3 treatment. Inhibition of lipolysis increased renal and cardiac PDHa in control but not in T3-treated 48 h-starved rats, despite decreased fatty acid and ketone-body concentrations in both groups. The results suggest that hyperthyroidism influences the response of cardiac and renal PDHa activities to starvation through changes in the metabolism of lipid fuels in these tissues.


1994 ◽  
Vol 267 (4) ◽  
pp. E528-E536 ◽  
Author(s):  
G. Cipres ◽  
E. Urcelay ◽  
N. Butta ◽  
M. S. Ayuso ◽  
R. Parrilla ◽  
...  

This work aimed to determine the role played by the adrenal gland in the fatty acid control of gluconeogenesis in isolated perfused rat livers. The gluconeogenic substrate concentration responses were not altered in adrenalectomized (ADX) rats. This observation indicates that glucocorticoids are not essential to maintain normal basal gluconeogenic rates. In contrast, fatty acid failed to stimulate gluconeogenesis from lactate and elicited attenuated stimulation with pyruvate as substrate in livers from ADX rats. Fatty acid-induced stimulation of respiration and ketone body production were similar in control and ADX rats. Thus the diminished responsiveness of the gluconeogenic pathway to fatty acid cannot be the result of different rates of energy production and/or generation of reducing power. Fatty acids did not inhibit pyruvate decarboxylation in livers from ADX rats. Even though mitochondria isolated from livers of ADX rats showed normal basal rates of pyruvate metabolism, fatty acids failed to inhibit pyruvate decarboxylation and the activity of the pyruvate dehydrogenase complex. This novel observation of the glucocorticoid effect in controlling the pyruvate dehydrogenase complex responsiveness indicates that the mitochondrial partitioning of pyruvate between carboxylation and decarboxylation reactions may be altered in livers from ADX rats. We propose that the diminished effect of fatty acid in stimulating gluconeogenesis in livers from ADX rats is the result of a limited pyruvate availability for the carboxylase reaction due to a lack of inhibition of flux through the pyruvate dehydrogenase complex.


1985 ◽  
Vol 40 (11-12) ◽  
pp. 917-918 ◽  
Author(s):  
Uwe Homeyer ◽  
D. Schulze-Siebert ◽  
G. Schultz

Abstract In vitro incubation of intact spinach chloroplasts with 1 mᴍ Pyruvate was used to study the specificity of action of the herbicide Chlorsulfuron on the synthesis of valine, alanine and fatty acids. As a result, increasing concentrations of the herbicide strongly inhibited valine synthesis while fatty acid synthesis via pyruvate dehydrogenase complex (PDC) and alanine formation by transamination reaction was promoted.


2016 ◽  
Vol 311 (1) ◽  
pp. E117-E127 ◽  
Author(s):  
Saleh Mahmood ◽  
Barbara Birkaya ◽  
Todd C. Rideout ◽  
Mulchand S. Patel

During the absorptive state, the liver stores excess glucose as glycogen and synthesizes fatty acids for triglyceride synthesis for export as very low density lipoproteins. For de novo synthesis of fatty acids from glucose, the mitochondrial pyruvate dehydrogenase complex (PDC) is the gatekeeper for the generation of acetyl-CoA from glucose-derived pyruvate. Here, we tested the hypothesis that limiting the supply of PDC-generated acetyl-CoA from glucose would have an impact on expression of key genes in the lipogenic pathway. In the present study, although the postnatal growth of liver-specific PDC-deficient (L-PDCKO) male mice was largely unaltered, the mice developed hyperinsulinemia with lower blood glucose levels in the fed state. Serum and liver lipid triglyceride and cholesterol levels remained unaltered in L-PDCKO mice. Expression of several key genes ( ACL, ACC1) in the lipogenic pathway and their upstream regulators ( LXR, SREBP1, ChREBP) as well as several genes in glucose metabolism ( Pklr, G6pd2, Pck1) and fatty acid oxidation ( FAT, Cpt1a) was downregulated in livers from L-PDCKO mice. Interestingly, there was concomitant upregulation of lipogenic genes in adipose tissue from L-PDCKO mice. Although, the total hepatic acetyl-CoA content remained unaltered in L-PDCKO mice, modified acetylation profiles of proteins in the nuclear compartment suggested an important role for PDC-generated acetyl-CoA in gene expression in de novo fatty acid synthesis in the liver. This finding has important implications for the regulation of hepatic lipid synthesis in pathological states.


Livers ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 82-97
Author(s):  
Benjamin L. Woolbright ◽  
Robert A. Harris

Pyruvate metabolism is critical for all mammalian cells. The pyruvate dehydrogenase complex couples the pyruvate formed as the primary product of glycolysis to the formation of acetyl-CoA required as the primary substrate of the citric acid cycle. Dysregulation of this coupling contributes to alterations in metabolic flexibility in obesity, diabetes, cancer, and more. The pyruvate dehydrogenase kinase family of isozymes phosphorylate and inactive the pyruvate dehydrogenase complex in the mitochondria. This function makes them critical mediators of mitochondrial metabolism and drug targets in a number of disease states. The liver expresses multiple PDKs, predominantly PDK1 and PDK2 in the fed state and PDK1, PDK2, and PDK4 in the starved and diabetic states. PDK4 undergoes substantial transcriptional regulation in response to a diverse array of stimuli in most tissues. PDK2 has received less attention than PDK4 potentially due to the dramatic changes in transcriptional gene regulation. However, PDK2 is more responsive than the other PDKs to feedforward and feedback regulation by substrates and products of the pyruvate dehydrogenase complex. Although underappreciated, this makes PDK2 particularly important for the minute-to-minute fine control of the pyruvate dehydrogenase complex and a major contributor to metabolic flexibility. The purpose of this review is to characterize the underappreciated role of PDK2 in liver metabolism. We will focus on known biological actions and physiological roles as well as what roles PDK2 may play in disease states. We will also define current inhibitors and address their potential as therapeutic agents in the future.


1994 ◽  
Vol 49 (7-8) ◽  
pp. 421-426 ◽  
Author(s):  
Andrea Golz ◽  
Hartmut K. Lichtenthaler

The activity of the plastidic pyruvate dehydrogenase complex (pPDHC) is one source of acetyl-CoA in plastids of higher plants needed for de novo fatty acid biosynthesis. This plastidic enzyme reaction is specifically inhibited by acetylmethylphosphinate (AMPI), a com ­ pound which had hitherto been known only as an inhibitor of the mitochondrial pyruvate dehydrogenase complex (mPDHC). In the test system of isolated intact oat plastids (Avena sativa) [2-14C]pyruvate was used for de novo fatty acid biosynthesis. The incorporation of label from [2-14C]pyruvate in fatty acids was inhibited by AMPI in a dose-dependent manner. The inhibition rose with increasing preincubation time of plastids with the inhibitor. I50 values for the inhibition of de novo fatty acid biosynthesis from [2-14C]pyruvate by AMPI for iso­lated etioplasts and chloroplasts were 4.5 and 80 μm , respectively. The activity of the pPDHC decreased during greening of oat seedlings, as is seen from the decreasing incorporation of [2-14C]pyruvate into fatty acids during the light-induced transformation of etioplasts into chloroplasts. In contrast to the decreasing pPDHC activity, the activity of the plastidic acetyl-C oA synthetase (ACS), which transfers acetate to acetyl-CoA, rose parallel to the transfor­mation of etioplasts into chloroplasts. During the assay time of 20 min we could not detect an incorporation of radiolabel from pyruvate or acetate into β-carotene or any other carotenoid


1993 ◽  
Vol 265 (1) ◽  
pp. E102-E107 ◽  
Author(s):  
G. J. Cooney ◽  
G. S. Denyer ◽  
A. B. Jenkins ◽  
L. H. Storlien ◽  
E. W. Kraegen ◽  
...  

Activity of the insulin-activated pyruvate dehydrogenase complex (PDHC) is necessary for the complete oxidation of glucose to carbon dioxide or the conversion of glucose to fatty acids in lipogenic tissues. To determine the in vivo insulin sensitivity of PDHC activity in rat tissues, we measured the amount of PDHC in the active form in heart, diaphragm, red quadriceps, white adipose tissue (WAT), and brown adipose tissue (BAT) of rats exposed to five different circulating insulin concentrations under euglycemic clamp conditions. PDHC was measured in mitochondrial extracts of tissues rapidly dissected from rats in the starved state or after euglycemic clamp (4 mM) at insulin infusion rates of 0, 0.125, 0.25, and 2.0 U.kg-1.h-1. Increasing the insulin concentration increased the PDHC activity in all tissues, but the magnitude of this activation was different in different tissues (heart: 3.5-fold; diaphragm: 2.5-fold; red quadriceps: 1.8-fold; WAT: 3.4-fold; and BAT: 10.5-fold). Calculation of the half-maximal effective dose (ED50) for the activation of PDHC produced values that were similar in all tissues (heart: 112 pM; diaphragm: 108 pM; red quadriceps: 146 pM; WAT: 120 pM; and BAT: 118 pM). The insulin sensitivity of PDHC in these tissues correlated particularly well with the ED50 for the insulin effect of decreasing circulating nonesterified fatty acids (NEFA; 122 pM). The differences in the magnitude of the effect of increasing insulin on PDHC activity implies a tissue difference in the requirement for an increased capacity for glucose oxidation after insulin stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document