scholarly journals The effect of limited proteolysis on GTP-dependent Ca2+ efflux and GTP-dependent fusion in rat liver microsomal vesicles

1989 ◽  
Vol 258 (3) ◽  
pp. 823-829 ◽  
Author(s):  
J G Comerford ◽  
A P Dawson

1. Limited proteolytic digestion of rat liver microsomes (microsomal fractions) with trypsin (5 micrograms/ml), proteinase K (1.0 microgram/ml) and Pronase (20 micrograms/ml final concns.) resulted in abolition of GTP-dependent vesicle fusion. 2. Vesicle fusion could be partially restored to microsomes which had undergone limited tryptic digestion, by the addition of untreated microsomal vesicles. 3. GTP-dependent Ca2+ efflux from rat liver microsomes was also observed to be inhibited by limited proteolysis with trypsin and proteinase K. 4. Limited proteolysis of rat liver microsomes had no effect on subsequent GTP-dependent phosphorylation of polypeptides of Mr 17,000 and 38,000, and thus it is unlikely that the phosphorylation of these proteins is involved in GTP-dependent Ca2+ efflux and GTP-dependent vesicle fusion. 5. GTP binding by Gn proteins [proteins which bind GTP after transfer to nitrocellulose, as defined by Bhullar & Haslam (1986) Biochem. J. 245, 617-620] was inhibited by pre-treatment of microsomes with trypsin, proteinase K and Pronase at concentrations similar to those which abolished GTP-dependent Ca2+ efflux and vesicle fusion. 6. We suggest that one or more of the Gn proteins may be involved in the molecular mechanisms of GTP-dependent vesicle fusion and Ca2+ efflux in rat liver microsomes and that limited proteolytic digestion may be a useful tool in further investigation of these processes.

1991 ◽  
Vol 280 (2) ◽  
pp. 335-340 ◽  
Author(s):  
J G Comerford ◽  
A P Dawson

1. Inhibition of GTP-dependent membrane fusion of rat liver microsomes requires preincubation of the membranes with GDP (17 microM) and relatively high Mg2+ concentration (0.5 mM) as well as AlCl3 (30 microM) and KF (5 mM). Preincubation is required for maximal inhibition (75%). 2. Vesicle fusion in rat liver microsomes has been demonstrated in the absence of polyethylene glycol (PEG). Further, inhibition by AlF4- of GTP-dependent vesicle fusion in the absence of PEG has been demonstrated. 3. Under similar preincubation conditions AlF4- can bring about inhibition (80%) of the high-affinity PEG-stimulated GTPase activity in rat liver microsomes, previously described by Nicchitta, Joseph & Williamson [(1986) FEBS Lett. 209, 243-248]. 4. Preincubation of small-Mr GTP-binding proteins (Gn proteins) on nitrocellulose strips with GDP (20 pM), AlCl3 (30 microM) and KF (5 mM) results in inhibition of binding of guanosine 5′-[gamma-[35S]thio]triphosphate to Gn proteins. The extent of inhibition of this binding differs for different Gn proteins.


FEBS Letters ◽  
1989 ◽  
Vol 245 (1-2) ◽  
pp. 274-278 ◽  
Author(s):  
Jochen Kleineke ◽  
Andrea Schröder ◽  
Hans-Dieter Söling

1993 ◽  
Vol 289 (2) ◽  
pp. 561-567 ◽  
Author(s):  
J G Comerford ◽  
A P Dawson

(1) CoA (IC50 23 microM) and acyl-CoAs (IC50 values 15-18 microM) inhibit GTP-dependent vesicle fusion in rat liver microsomal vesicles. Acyl-CoAs of carbon chain length C8 and C20 are much less effective than acyl-CoAs of carbon chain length C14-C18. The effect of CoA is mimicked by dephospho-CoA, but not by desulpho-CoA. High acyl-CoA concentrations (50 microM) appear to favour formation of small vesicles (budding), while 50 microM CoA does not. (2) Low concentrations of CoA (EC50 2 microM) and palmitoyl-CoA (10 microM) cause re-accumulation of Ca2+ released in response to GTP. This re-accumulation is into an Ins(1,4,5)P3-sensitive compartment. By investigation of the effects of CoA and palmitoyl-CoA on the thapsigargin-induced passive leak rate of Ca2+, and on the latency of the mannose-6-phosphatase of the vesicles, we conclude that CoA and palmitoyl-CoA cause decreased vesicle permeability rather than stimulation of Ca2+ pumping activity. (3) It is suggested that GTP-induced membrane fusion in rat liver microsomes involves an as yet uncharacterized acylation-deacylation reaction which is required to produce complete vesicle sealing.


1997 ◽  
Vol 328 (2) ◽  
pp. 463-471 ◽  
Author(s):  
C. Kekulu FERNANDO ◽  
B. Roland GREGORY ◽  
Frosa KATSIS ◽  
E. Bruce KEMP ◽  
J. Greg BARRITT

The roles of a monomeric GTP-binding regulatory protein in the activation of store-activated plasma membrane Ca2+ channels and in the release of Ca2+ from the smooth endoplasmic reticulum (SER) in rat liver parenchymal cells were investigated with the use of freshly isolated rat hepatocytes and rat liver microsomes. A low concentration (approx. 130 μM intracellular) of guanosine 5ʹ-[γ-thio]triphosphate (GTP[S]) activated Ca2+ inflow in intact hepatocytes in the absence of an agonist, whereas a high concentration (approx. 530 μM intracellular) of GTP[S] or guanosine 5ʹ-[βγ-imido]triphosphate (p[NH]ppG) inhibited the Ca2+ inflow induced by inhibitors of the activity of the endoplasmic-reticulum Ca2+-ATPase (SERCA) and by vasopressin. GTP (530 μM) prevented the inhibition of Ca2+ inflow by GTP[S] and p[NH]ppG. Brefeldin A and the peptide human Arf-1-(2-17), which inhibit many functions of ADP ribosylation factor (Arf) proteins, inhibited the Ca2+ inflow induced by SERCA inhibitors and vasopressin, and altered the profile of Ca2+ release from the SER. These effects were observed at concentrations of Brefeldin A and Arf-1-(2-17) comparable with those that inhibit the functions of Arf proteins in other systems. Succinylated Arf-1-(2-17) had a negligible effect on Ca2+ inflow. GTP[S] and Arf-1-(2-17) completely inhibited the synergistic action of GTP and Ins(1,4,5)P3 in releasing 45Ca2+ from rat liver microsomes loaded with 45Ca2+. AlF4- (under conditions expected to activate trimeric G-proteins) and succinylated Arf-1-(2-17) had no effect on GTP/Ins(1,4,5)P3-induced 45Ca2+ release, and a mastoparan analogue caused partial inhibition. Arf-1-(2-17) did not inhibit 45Ca2+ release induced by either thapsigargin or ionomycin. It is concluded that a low-molecular-mass G-protein, most probably a member of the Arf protein family, is required for store-activated Ca2+ inflow in rat hepatocytes. The idea that the role of this G-protein is to maintain a region of the SER in the correct intracellular location is discussed briefly.


2011 ◽  
Vol 67 (4) ◽  
pp. 499-510 ◽  
Author(s):  
Maria Perepechaeva ◽  
Natalia Kolosova ◽  
Alevtina Grishanova

2020 ◽  
Vol 17 ◽  
Author(s):  
LiJuan Wang ◽  
Yan Liu ◽  
Rui Li ◽  
DongXian He

Objectives: Triptolide (TPL) has been shown to have a good clinical effect on rheumatoid arthritis (RA). We designed TPL microspheres (TPL-MS) and investigated its metabolic behavior in human, dog, rabbit and rat liver microsomes (HLM, DLM, RLM and SDRLM) with UPLC-MS/MS method. Methods: First, a UPLC-MS/MS method was established to measure concentration of TPL in samples. The sample was separated on a C18 column (2.1×100 mm, 1.8μm) and eluted with a gradient elution. The precursor ion/product ion were m/z 378.1/361.0 for TPL and 260.0/116.2 for the internal standard. Then T1/2, Vmax and CLint were calculated from the above data. Finally, the metabolites of TPL-MS were identified by high-resolution UPLC-MS/MS. The sample was separated on a C18 column (2.1×100 mm, 2.2 μm) and eluted with isocratic elution. Mass spectrometric detection was carried out on a thermo Q-exactive mass spectrometer with HESI. The scanning range of precursor ions was from m/z 50 to m/z 750. Result and Discussion: Through several indicators including standard curve, precision, accuracy, stability, matrix effect and recovery rate, the enzymatic kinetics parameters including T1/2, Vmax and CLint were completed. Several metabolites of TPL-MS were identified. Conclusion: UPLC-MS/MS method is an accurate and sensitive method for determination of TPL in liver microsome samples with good precision, accuracy and stability. The variation of parameters indicated that the microspheres can delay the elimination of TPL in liver microsomes. The metabolism of TPL-MS varied among species, but no new metabolites appeared.


Author(s):  
Hua‐Hai Zhang ◽  
Wen‐Jia Yang ◽  
Ya‐Jun Huang ◽  
Wen‐Jing Li ◽  
Shuo‐Xin Zhang ◽  
...  

2021 ◽  
Author(s):  
Anna Mieszkowska ◽  
Koleta Hemine ◽  
Anna Skwierawska ◽  
Ewa Augustin ◽  
Zofia Mazerska

AbstractThe present studies were carried out to evaluate the simultaneous one-pot metabolism of opipramol (IS-opi) and analog (IS-noh) by phase I and phase II enzymes present in rat liver microsomes (RLM) as an alternative to separate testing with recombinant enzymes. This approach allows for more time-saving and cost-effective screening of the metabolism of newly discovered drugs. We also considered that the lack of results for phase II, including UGT, often creates problems in correct selection of valuable compounds. Moreover, microsomes data set is richer in the contest and provides medical scientist to determine also the susceptibility of drugs to undergo phase I and then phase II. In the present work, we have shown that IS-noh was metabolized in vitro by phase I enzymes to the oxidation product, which was next transformed with UGTs to glucuronide. The results showed also that the previously known oxidation product of opipramol was changed to previously no reported glucuronidation product by UDP-glucuronosyltransferases. In addition, unlike IS-noh, opipramol did not prove to be the substrate for UGTs. Therefore, tricyclic antidepressants depending on the structure can trigger a different response after contact with UGT enzymes. Some will metabolize directly with UGTs, others only after activation by phase I enzymes.


Sign in / Sign up

Export Citation Format

Share Document