scholarly journals Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes

1997 ◽  
Vol 328 (2) ◽  
pp. 463-471 ◽  
Author(s):  
C. Kekulu FERNANDO ◽  
B. Roland GREGORY ◽  
Frosa KATSIS ◽  
E. Bruce KEMP ◽  
J. Greg BARRITT

The roles of a monomeric GTP-binding regulatory protein in the activation of store-activated plasma membrane Ca2+ channels and in the release of Ca2+ from the smooth endoplasmic reticulum (SER) in rat liver parenchymal cells were investigated with the use of freshly isolated rat hepatocytes and rat liver microsomes. A low concentration (approx. 130 μM intracellular) of guanosine 5ʹ-[γ-thio]triphosphate (GTP[S]) activated Ca2+ inflow in intact hepatocytes in the absence of an agonist, whereas a high concentration (approx. 530 μM intracellular) of GTP[S] or guanosine 5ʹ-[βγ-imido]triphosphate (p[NH]ppG) inhibited the Ca2+ inflow induced by inhibitors of the activity of the endoplasmic-reticulum Ca2+-ATPase (SERCA) and by vasopressin. GTP (530 μM) prevented the inhibition of Ca2+ inflow by GTP[S] and p[NH]ppG. Brefeldin A and the peptide human Arf-1-(2-17), which inhibit many functions of ADP ribosylation factor (Arf) proteins, inhibited the Ca2+ inflow induced by SERCA inhibitors and vasopressin, and altered the profile of Ca2+ release from the SER. These effects were observed at concentrations of Brefeldin A and Arf-1-(2-17) comparable with those that inhibit the functions of Arf proteins in other systems. Succinylated Arf-1-(2-17) had a negligible effect on Ca2+ inflow. GTP[S] and Arf-1-(2-17) completely inhibited the synergistic action of GTP and Ins(1,4,5)P3 in releasing 45Ca2+ from rat liver microsomes loaded with 45Ca2+. AlF4- (under conditions expected to activate trimeric G-proteins) and succinylated Arf-1-(2-17) had no effect on GTP/Ins(1,4,5)P3-induced 45Ca2+ release, and a mastoparan analogue caused partial inhibition. Arf-1-(2-17) did not inhibit 45Ca2+ release induced by either thapsigargin or ionomycin. It is concluded that a low-molecular-mass G-protein, most probably a member of the Arf protein family, is required for store-activated Ca2+ inflow in rat hepatocytes. The idea that the role of this G-protein is to maintain a region of the SER in the correct intracellular location is discussed briefly.

1982 ◽  
Vol 208 (2) ◽  
pp. 453-457 ◽  
Author(s):  
S Alemany ◽  
I Varela ◽  
J M Mato

The addition of 1 microM-vasopressin or -angiotensin to isolated rat hepatocytes induced a fast transient inhibition of the rate of incorporation of [Me-3H]choline into phosphatidylcholine. The cationophore A23187 induced a similar inhibition of phosphatidylcholine synthesis. The addition of micromolar Ca2+ to rat liver microsomes inhibited the activity of CDP-choline: 1,2-diacylglycerol cholinephosphotransferase. This inhibition is due a decrease in the Vmax. of the enzyme without affecting the Km for CDP-choline. It is concluded that Ca2+ regulates phosphatidylcholine synthesis in rat liver.


1992 ◽  
Vol 287 (1) ◽  
pp. 91-100 ◽  
Author(s):  
L Cook ◽  
M N Nagi ◽  
S K Suneja ◽  
A R Hand ◽  
D L Cinti

The present study provides strong evidence that the previously isolated hepatic microsomal beta-hydroxyacyl-CoA dehydrase (EC 4.2.1.17), believed to be a component of the fatty acid chain-elongation system, is derived, not from the endoplasmic reticulum, but rather from the peroxisomes. The isolated dehydrase was purified over 3000-fold and showed optimal enzymic activity toward beta-hydroxyacyl-CoAs or trans-2-enoyl-CoAs with carbon chain lengths of 8-10. The purified preparation (VDH) displayed a pH optimum at 7.5 with beta-hydroxydecanoyl-CoA, and at 6.0 with beta-hydroxystearoyl-CoA. Competitive-inhibition studies suggested that VDH contained dehydrase isoforms, and SDS/PAGE showed three major bands at 47, 71 and 78 kDa, all of which reacted to antibody raised to the purified preparation. Immunocytochemical studies with anti-rabbit IgG to VDH unequivocally demonstrated gold particles randomly distributed throughout the peroxisomal matrix of liver sections from both untreated and di-(2-ethylhexyl) phthalate-treated rats. No labelling was associated with endoplasmic reticulum or with the microsomal fraction. Substrate-specificity studies and the use of antibodies to VDH and to the peroxisomal trifunctional protein indicated that VDH and the latter are separate enzymes. On the other hand, the VDH possesses biochemical characteristics similar to those of the D-beta-hydroxyacyl-CoA dehydrase recently isolated from rat liver peroxisomes [Li, Smeland & Schulz (1990) J. Biol. Chem. 265, 13629-13634; Hiltunen, Palosaari & Kunau (1989) J. Biol. Chem. 264, 13536-13540]. Neither enzyme utilizes crotonoyl-CoA or cis-2-enoyl-CoA as substrates, but both enzymes convert trans-2-enoyl substrates into the D-isomer only. In addition, the VDH also contained beta-oxoacyl-CoA reductase (beta-hydroxyacyl-CoA dehydrogenase) activity, which co-purified with the dehydrase.


1999 ◽  
Vol 46 (1) ◽  
pp. 203-210 ◽  
Author(s):  
J Lenart ◽  
S Pikuła

1,12-Dodecanedioic acid, the end-product of omega-hydroxylation of lauric acid, stimulates in a concentration dependent manner, phosphatidylethanolamine synthesis via ethanolamine-specific phospholipid base exchange reaction in rat liver endoplasmic reticulum. On the other hand, administration to rats of 10-undecynoic acid, a specific inhibitor of omega-hydroxylation reaction catalyzed by cytochrome P450 4A1, inhibits the ethanolamine-specific phospholipid base exchange activity by 30%. This is accompanied by a small but significant decrease in phosphatidylethanolamine content in the endoplasmic reticulum and inhibition of cytochrome P450 4A1. On the basis of these results it can be proposed that a functional relationship between cytochrome P450 4A1 and phosphatidylethanolamine synthesis exists in rat liver. Cytochrome P450 4A1 modulates the cellular level of lauric acid, an inhibitor of phospholipid synthesis. In turn, ethanolamine-specific phospholipid base exchange reaction provides molecular species of phospholipids, containing mainly long-chain polyunsaturated fatty acid moieties, required for the optimal activity of cytochrome P450 4A1.


1988 ◽  
Vol 36 (10) ◽  
pp. 1263-1273 ◽  
Author(s):  
J Paiement ◽  
F W Kan ◽  
J Lanoix ◽  
M Blain

Fragments of rough and smooth endoplasmic reticulum purified from rat liver were injected into Xenopus oocyte cytoplasm. Light and electron microscopy, cytochemistry, immunocytochemistry, and enzyme assay were employed to determine the fate of heterologous membranes in the host cytoplasm. The in vivo-incubated microsomes disappeared in a time-dependent manner. Within 3 hr, rough microsomes were replaced by flattened ER cisternae and smooth microsomes were replaced by a network of anastomosing tubules. Polyclonal antibodies against rat liver microsomes and protein A-gold complexes were applied to glycol methacrylate sections of microinjected oocytes. Specific labeling was observed over discrete rough and smooth ER cisternae 3 hr after microinjection. Endogenous ER was not labeled by this technique, and label was not observed when sections were treated with pre-immune antibodies. Diaminobenzidene cytochemistry of microinjected rat lacrimal gland microsomes revealed enzyme activity in heterologous microsomes after 3 hr of in vivo incubation. Control injected microsomes (inactivated by heat denaturation) became associated with autophagic vacuoles, coincident with changes in lysosomal activity. Freshly isolated un-denatured microsomes did not provoke changes in lysosomal activity, and glucose-6-phosphatase activity associated with microinjected membranes could be detected 21 hr after in vivo incubation. Since rat liver microsomes reconstitute after in vivo incubation into cytoplasmic structures resembling those from which they were derived, we conclude that the microinjected membrane fragments act as templates for their own three-dimensional organization.


1991 ◽  
Vol 280 (2) ◽  
pp. 335-340 ◽  
Author(s):  
J G Comerford ◽  
A P Dawson

1. Inhibition of GTP-dependent membrane fusion of rat liver microsomes requires preincubation of the membranes with GDP (17 microM) and relatively high Mg2+ concentration (0.5 mM) as well as AlCl3 (30 microM) and KF (5 mM). Preincubation is required for maximal inhibition (75%). 2. Vesicle fusion in rat liver microsomes has been demonstrated in the absence of polyethylene glycol (PEG). Further, inhibition by AlF4- of GTP-dependent vesicle fusion in the absence of PEG has been demonstrated. 3. Under similar preincubation conditions AlF4- can bring about inhibition (80%) of the high-affinity PEG-stimulated GTPase activity in rat liver microsomes, previously described by Nicchitta, Joseph & Williamson [(1986) FEBS Lett. 209, 243-248]. 4. Preincubation of small-Mr GTP-binding proteins (Gn proteins) on nitrocellulose strips with GDP (20 pM), AlCl3 (30 microM) and KF (5 mM) results in inhibition of binding of guanosine 5′-[gamma-[35S]thio]triphosphate to Gn proteins. The extent of inhibition of this binding differs for different Gn proteins.


Author(s):  
Sten Orrenius

My research activity started with studies on drug metabolism in rat liver microsomes in the early 1960s. The CO-binding pigment (cytochrome P450) had been discovered a few years earlier and was subsequently found to be involved in steroid hydroxylation in adrenal cortex microsomes. Our early studies suggested that it also participated in the oxidative demethylation of drugs catalyzed by liver microsomes, and that prior treatment of the animals with phenobarbital caused increased levels of the hemoprotein in the liver, and similarly enhanced rates of drug metabolism. Subsequent studies of cytochrome P450-mediated metabolism of toxic drugs in freshly isolated rat hepatocytes characterized critical cellular defense systems and identified mechanisms by which accumulating toxic metabolites could damage and kill the cells. These studies revealed that multiple types of cell death could result from the toxic injury, and that it is important to know which type of cell death results from the toxic injury.


1989 ◽  
Vol 258 (3) ◽  
pp. 823-829 ◽  
Author(s):  
J G Comerford ◽  
A P Dawson

1. Limited proteolytic digestion of rat liver microsomes (microsomal fractions) with trypsin (5 micrograms/ml), proteinase K (1.0 microgram/ml) and Pronase (20 micrograms/ml final concns.) resulted in abolition of GTP-dependent vesicle fusion. 2. Vesicle fusion could be partially restored to microsomes which had undergone limited tryptic digestion, by the addition of untreated microsomal vesicles. 3. GTP-dependent Ca2+ efflux from rat liver microsomes was also observed to be inhibited by limited proteolysis with trypsin and proteinase K. 4. Limited proteolysis of rat liver microsomes had no effect on subsequent GTP-dependent phosphorylation of polypeptides of Mr 17,000 and 38,000, and thus it is unlikely that the phosphorylation of these proteins is involved in GTP-dependent Ca2+ efflux and GTP-dependent vesicle fusion. 5. GTP binding by Gn proteins [proteins which bind GTP after transfer to nitrocellulose, as defined by Bhullar & Haslam (1986) Biochem. J. 245, 617-620] was inhibited by pre-treatment of microsomes with trypsin, proteinase K and Pronase at concentrations similar to those which abolished GTP-dependent Ca2+ efflux and vesicle fusion. 6. We suggest that one or more of the Gn proteins may be involved in the molecular mechanisms of GTP-dependent vesicle fusion and Ca2+ efflux in rat liver microsomes and that limited proteolytic digestion may be a useful tool in further investigation of these processes.


1993 ◽  
Vol 292 (1) ◽  
pp. 99-104 ◽  
Author(s):  
G Bánhegyi ◽  
G Bellomo ◽  
R Fulceri ◽  
J Mandl ◽  
A Benedetti

The relationship between the intraluminal Ca2+ content of endoplasmic reticulum and the rate of the glucuronidation of p-nitrophenol was investigated in isolated rat hepatocytes. Different agents which decrease the Ca2+ level in the endoplasmic reticulum [calcium ionophores (A23187, ionomycin) or Ca(2+)-ATPase inhibitors(thapsigargin,2,5-di-(t-butyl)-1,4-benzohydroquinone+ ++)] inhibited the conjugation of p-nitrophenol. Depletion of intracellular Ca2+ stores by preincubation of hepatocytes in the absence of free Ca2+ (in the presence of excess EGTA) also decreased the rate of glucuronidation; Ca2+ re-admission to EGTA-treated hepatocytes restored glucuronidation. In intact liver microsomes the p-nitrophenol UDP-glucuronosyl-transferase activity was not modified by varying the external free Ca2+ concentrations within a cytosol-like range. Emptying of the Ca2+ from the lumen of microsomal vesicles by A23187, after MgATP-stimulated Ca2+ sequestration, decreased the glucuronidation of p-nitrophenol. A similar effect was observed in filipin-permeabilized hepatocytes. In native and in detergent-treated microsomes, Ca2+ (1-10 mM) increased the p-nitrophenol UDP-glucuronosyltransferase activity. It is suggested that the physiological concentration of Ca2+ in the lumen of the endoplasmic reticulum is necessary for the optimal activity of p-nitrophenol UDP-glucuronosyltransferase; the depletion of Ca2+ decreases the activity of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document