scholarly journals Structural basis for the kinetic differences between flavocytochromes b2 from the yeasts Hansenula anomala and Saccharomyces cerevisiae

1989 ◽  
Vol 263 (3) ◽  
pp. 973-976 ◽  
Author(s):  
M T Black ◽  
F J Gunn ◽  
S K Chapman ◽  
G A Reid

To understand the structural basis for the different catalytic behaviour of the flavocytochromes b2 from Saccharomyces cerevisiae and Hansenula anomala we have cloned and sequenced the gene encoding the latter. We have compared the amino acid sequences of the mature proteins in the context of the known crystal structure of S. cerevisiae flavocytochrome b2. Overall there is 60% sequence identity, but two surface loops in particular are strikingly different in primary structure and net charge.

1995 ◽  
Vol 15 (9) ◽  
pp. 4661-4671 ◽  
Author(s):  
G Cullmann ◽  
K Fien ◽  
R Kobayashi ◽  
B Stillman

Replication factor C (RFC) is a five-subunit DNA polymerase accessory protein that functions as a structure-specific, DNA-dependent ATPase. The ATPase function of RFC is activated by proliferating cell nuclear antigen. RFC was originally purified from human cells on the basis of its requirement for simian virus 40 DNA replication in vitro. A functionally homologous protein complex from Saccharomyces cerevisiae, called ScRFC, has been identified. Here we report the cloning, by either peptide sequencing or by sequence similarity to the human cDNAs, of the S. cerevisiae genes RFC1, RFC2, RFC3, RFC4, and RFC5. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38-kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from Escherichia coli and the phage T4 replication apparatus. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and also have a significant degree of similarity among each other. We have identified eight segments of conserved amino acid sequences that define a family of related proteins. Despite their high degree of sequence similarity, all five RFC genes are essential for cell proliferation in S. cerevisiae. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. CDC44/RFC1 is known to interact genetically with the gene encoding proliferating cell nuclear antigen, confirming previous biochemical evidence of their functional interaction in DNA replication.


1996 ◽  
Vol 314 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Krishna M. ELLA ◽  
Joseph W. DOLAN ◽  
Chen QI ◽  
Kathryn E. MEIER

A gene encoding phospholipase D (PLD) in Saccharomyces cerevisiae was identified. The 195 kDa product of PLD1 has 24% overall sequence identity with a plant PLD. Expression of yeast PLD activity was eliminated by one-step gene disruption. Yeast haploids lacking PLD activity were deficient in growth on non-fermentable carbon sources. Diploids lacking expression of PLD1 were unable to sporulate.


1999 ◽  
Vol 181 (18) ◽  
pp. 5876-5879 ◽  
Author(s):  
Deborah A. Hogan ◽  
Thomas A. Auchtung ◽  
Robert P. Hausinger

ABSTRACT The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/α-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/α-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being isethionate and taurocholate. Disruption of the gene encoding this enzyme negatively affects the use of isethionate and taurine as sulfur sources byS. cerevisiae, providing strong evidence that YLL057c plays a role in sulfonate catabolism.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1707-1715 ◽  
Author(s):  
J L Patton-Vogt ◽  
S A Henry

Abstract Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git−) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git− phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 553-562
Author(s):  
Margaret I Kanipes ◽  
John E Hill ◽  
Susan A Henry

Abstract The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Δ) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


1987 ◽  
Vol 262 (2) ◽  
pp. 546-548
Author(s):  
R Betz ◽  
J W Crabb ◽  
H E Meyer ◽  
R Wittig ◽  
W Duntze

Sign in / Sign up

Export Citation Format

Share Document