scholarly journals Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters

1990 ◽  
Vol 265 (3) ◽  
pp. 849-855 ◽  
Author(s):  
J T Rasmussen ◽  
T Börchers ◽  
J Knudsen

Bovine and rat liver acyl-CoA-binding proteins (ACBP) were found to exhibit a much higher affinity for long-chain acyl-CoA esters than both bovine hepatic and cardiac fatty-acid-binding proteins (hFABP and cFABP respectively). In the Lipidex 1000- as well as the liposome-binding assay, bovine and rat hepatic ACBP effectively bound long-chain acyl-CoA ester, h- and c-FABP were, under identical conditions, unable to bind significant amounts of long-chain acyl-CoA esters. When FABP, ACBP and [1-14C]hexadecanoyl-CoA were mixed, hexadecanoyl-CoA could be shown to be bound to ACBP only. The experimental results give strong evidence that ACBP, and not FABP, is the predominant carrier of acyl-CoA in liver.

1987 ◽  
Vol 242 (3) ◽  
pp. 919-922 ◽  
Author(s):  
M Sheridan ◽  
T C I Wilkinson ◽  
D C Wilton

The concentration of hepatic fatty acid-binding protein was determined in the livers of rats at various stages of development from foetus to young adult. Fatty acid-binding protein concentrations were determined by quantifying the fluorescence enhancement on the binding of the fluorescent probe 11-(dansylamino)-undecanoic acid. A 20-fold increase in the concentration of the protein was observed between the foetus and adult, and this increase was confirmed by immuno-blotting. No other protein in the 14,000-Mr range was observed in the foetus. Possible alternative fatty acid-binding proteins could not be detected in h.p.l.c.-fractionated foetal cytosol by the fluorescence-enhancement method.


1988 ◽  
Vol 251 (3) ◽  
pp. 919-925 ◽  
Author(s):  
P D Jones ◽  
A Carne ◽  
N M Bass ◽  
M R Grigor

A protein fraction with fatty acid binding activity has been isolated from mammary tissue from lactating rats by a process involving DEAE-cellulose ion-exchange chromatography, heat treatment, CM-cellulose ion-exchange chromatography and finally ammonium sulphate precipitation. The purified fraction migrated as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 14400. However, when this protein fraction was electrophoresed under non-dissociating conditions, two species were observed in a 4:1 ratio. The two components were separated using h.p.l.c. Both bind fatty acids and appear to have similar amino acid compositions although exhibiting different pI values of 4.8 and 4.9. The mammary fatty acid binding proteins appear to be very similar to the fatty acid binding protein isolated from rat heart based on the electrophoretic mobilities and amino acid composition. The major mammary form (pI 4.9) has been partially sequenced and the amino acid sequences obtained can be aligned with 67 residues of the revised rat heart amino acid sequence [Heuckeroth, Birkenmeier, Levin & Gordon (1987) J. Biol. Chem. 262, 9709-9717]. Both mammary species also showed immunochemical identity to rat heart fatty acid binding protein when tested with an anti-serum raised against the heart protein. Anti-sera raised against the minor mammary form (pI 4.8) specifically precipitated this form under non-denaturing conditions but both forms after they had been denatured. Quantitative immunoassays using the anti-(heart fatty acid binding protein) serum showed that concentrations of the fatty acid binding proteins present in mammary cytosols increase during lactation and increase further after feeding a high-fat diet.


1987 ◽  
Vol 241 (1) ◽  
pp. 189-192 ◽  
Author(s):  
I B Mogensen ◽  
H Schulenberg ◽  
H O Hansen ◽  
F Spener ◽  
J Knudsen

Bovine liver was shown to contain a hitherto undescribed medium-chain acyl-CoA-binding protein. The protein co-purifies with fatty-acid-binding proteins, but was, unlike these proteins, unable to bind fatty acids. The protein induced synthesis of medium-chain acyl-CoA esters on incubation with goat mammary-gland fatty acid synthetase. The possible function of the protein is discussed.


2001 ◽  
Vol 280 (2) ◽  
pp. E238-E247 ◽  
Author(s):  
Frank Caserta ◽  
Tamara Tchkonia ◽  
Vildan N. Civelek ◽  
Marc Prentki ◽  
Nicholas F. Brown ◽  
...  

Regional differences in free fatty acid (FFA) handling contribute to diseases associated with particular fat distributions. As cultured rat preadipocytes became differentiated, FFA transfer into preadipocytes increased and was more rapid in single perirenal than in epididymal cells matched for lipid content. Uptake by human omental preadipocytes was greater than uptake by abdominal subcutaneous preadipocytes. Adipose-specific fatty acid binding protein (aP2) and keratinocyte lipid binding protein abundance was higher in differentiated rat perirenal than in epididymal preadipocytes. This interdepot difference in preadipocyte aP2 expression was reflected in fat tissue in older animals. Carnitine palmitoyltransferase 1 activity increased during differentiation and was higher in perirenal than in epididymal preadipocytes, particularly the muscle isoform. Long-chain acyl-CoA levels were higher in perirenal than in epididymal preadipocytes and isolated fat cells. These data are consistent with interdepot differences in fatty acid flux ensuing from differences in fatty acid binding proteins and enzymes of fat metabolism. Heterogeneity among depots results, in part, from distinct intrinsic characteristics of adipose cells. Different depots are effectively separate miniorgans.


Sign in / Sign up

Export Citation Format

Share Document