scholarly journals Evidence that enzyme-generated aromatic Michael acceptors covalently modify the nucleotide-binding site of 3α-hydroxysteroid dehydrogenase

1990 ◽  
Vol 269 (3) ◽  
pp. 749-755 ◽  
Author(s):  
J W Ricigliano ◽  
T M Penning

The non-steroidal allylic and acetylenic alcohols 1-(4′-nitrophenyl)prop-2-en-1-ol (I) and 1-(4′-nitrophenyl)prop-2-yn-1-ol (II) are oxidized by homogeneous 3 alpha-hydroxysteroid dehydrogenase to the corresponding alpha β-unsaturated ketones 1-(4′-nitrophenyl)prop-2-en-1-one (III) and 1-(4′-nitrophenyl)prop-2-yn-1-one (IV), which then inactivate the enzyme selectively with high affinity; low effective partition ratios are observed for the parent alcohols [Ricigliano & Penning (1989) Biochem. J. 262, 139-149]. Inactivation of 3 alpha-hydroxysteroid dehydrogenase by compound (I) displays an NAD+ concentration optimum. Scavenging experiments indicate that the enzyme-generated inactivators (III) and (IV) alkylate the enzyme via a release-and-return mechanism. Several lines of evidence suggest that compounds (III) and (IV) covalently modify the NAD(P)(+)-binding site. First, micromolar concentrations of NAD(P)H offer substantial protection against enzyme inactivation mediated by Michael acceptors (III) and (IV). In these protection studies Kd measurements for NAD(P)H approached those measured by fluorescence titration of free enzyme. Secondly, under initial-velocity conditions compounds (III) and (IV) act essentially as competitive inhibitors of NAD+ binding, and as mixed competitive or non-competitive inhibitors against androsterone binding. Thirdly, enzyme inactivated with either compound (III) or compound (IV) fails to bind to NAD+ affinity columns (e.g. Affi-gel Blue). Under the same conditions of chromatography native enzyme and enzyme affinity-labelled at the steroid-binding site with 17 β-bromoacetoxy-5 alpha-dihydrotestosterone is retained on the affinity column. A kinetic scheme that represents the inactivation of the homogeneous dehydrogenase by the enzyme-generated alkylators (III) and (IV) is presented.

1986 ◽  
Vol 6 (12) ◽  
pp. 4723-4733
Author(s):  
L A Chodosh ◽  
R W Carthew ◽  
P A Sharp

A simple approach has been developed for the unambiguous identification and purification of sequence-specific DNA-binding proteins solely on the basis of their ability to bind selectively to their target sequences. Four independent methods were used to identify the promoter-specific RNA polymerase II transcription factor MLTF as a 46-kilodalton (kDa) polypeptide. First, a 46-kDa protein was specifically cross-linked by UV irradiation to a body-labeled DNA fragment containing the MLTF binding site. Second, MLTF sedimented through glycerol gradients at a rate corresponding to a protein of native molecular weight 45,000 to 50,000. Third, a 46-kDa protein was specifically retained on a biotin-streptavidin matrix only when the DNA fragment coupled to the matrix contained the MLTF binding site. Finally, proteins from the most highly purified fraction which were eluted and renatured from the 44- to 48-kDa region of a sodium dodecyl sulfate-polyacrylamide gel exhibited both binding and transcription-stimulatory activities. The DNA-binding activity was purified 100,000-fold by chromatography through three conventional columns plus a DNA affinity column. Purified MLTF was characterized with respect to the kinetic and thermodynamic properties of DNA binding. These parameters indicate a high degree of occupancy of MLTF binding sites in vivo.


1977 ◽  
Vol 129 (7) ◽  
pp. 788-794 ◽  
Author(s):  
James C. Warren ◽  
J.Robert Mueller ◽  
Chang-Chen Chin

2020 ◽  
Vol 21 (22) ◽  
pp. 8709
Author(s):  
Ido Rippin ◽  
Netaly Khazanov ◽  
Shirley Ben Joseph ◽  
Tania Kudinov ◽  
Eva Berent ◽  
...  

The serine/threonine kinase, GSK-3, is a promising drug discovery target for treating multiple pathological disorders. Most GSK-3 inhibitors that were developed function as ATP competitive inhibitors, with typical limitations in specificity, safety and drug-induced resistance. In contrast, substrate competitive inhibitors (SCIs), are considered highly selective, and more suitable for clinical practice. The development of SCIs has been largely neglected in the past because the ambiguous, undefined nature of the substrate-binding site makes them difficult to design. In this study, we used our previously described structural models of GSK-3 bound to SCI peptides, to design a pharmacophore model and to virtually screen the “drug-like” Zinc database (~6.3 million compounds). We identified leading hits that interact with critical binding elements in the GSK-3 substrate binding site and are chemically distinct from known GSK-3 inhibitors. Accordingly, novel GSK-3 SCI compounds were designed and synthesized with IC50 values of~1–4 μM. Biological activity of the SCI compound was confirmed in cells and in primary neurons that showed increased β-catenin levels and reduced tau phosphorylation in response to compound treatment. We have generated a new type of small molecule GSK-3 inhibitors and propose to use this strategy to further develop SCIs for other protein kinases.


1980 ◽  
Vol 191 (2) ◽  
pp. 533-541 ◽  
Author(s):  
Harry J. Gilbert ◽  
William T. Drabble

IMP dehydrogenase of Escherichia coli was irreversibly inactivated by Cl-IMP (6-chloro-9-β-d-ribofuranosylpurine 5′-phosphate, 6-chloropurine ribotide). The inactivation reaction showed saturation kinetics. 6-Chloropurine riboside did not inactivate the enzyme. Inactivation by Cl-IMP was retarded by ligands that bind at the IMP-binding site. Their effectiveness was IMP>XMP>GMP»AMP. NAD+ did not protect the enzyme from modification. Inactivation of IMP dehydrogenase was accompanied by a change in λmax. of Cl-IMP from 263 to 290nm, indicating formation of a 6-alkylmercaptopurine nucleotide. The spectrum of 6-chloropurine riboside was not changed by IMP dehydrogenase. With excess Cl-IMP the increase in A290 with time was first-order. Thus it appears that Cl-IMP reacts with only one species of thiol at the IMP-binding site of the enzyme: 2–3mol of Cl-IMP were bound per mol of IMP dehydrogenase tetramer. Of ten mutant enzymes from guaB strains, six reacted with Cl-IMP at a rate similar to that for the native enzyme. The interaction was retarded by IMP. None of the mutant enzymes reacted with 6-chloropurine riboside. 5,5′-Dithiobis-(2-nitrobenzoic acid), iodoacetate, iodoacetamide and methyl methanethiosulphonate also inactivated IMP dehydrogenase. Reduced glutathione re-activated the methanethiolated enzyme, and 2-mercaptoethanol re-activated the enzyme modified by Cl-IMP. IMP did not affect the rate of re-activation of methanethiolated enzyme. Protective modification indicates that Cl-IMP, methyl methanethiosulphonate and iodoacetamide react with the same thiol groups in the enzyme. This is also suggested by the low incorporation of iodo[14C]acetamide into Cl-IMP-modified enzyme. Hydrolysis of enzyme inactivated by iodo[14C]acetamide revealed radioactivity only in S-carboxymethylcysteine. The use of Cl-IMP as a probe for the IMP-binding site of enzymes from guaB mutants is discussed, together with the possible function of the essential thiol groups.


Sign in / Sign up

Export Citation Format

Share Document