scholarly journals Insulin and tri-iodothyronine induce glucokinase mRNA in primary cultures of neonatal rat hepatocytes

1990 ◽  
Vol 271 (3) ◽  
pp. 585-589 ◽  
Author(s):  
M R Narkewicz ◽  
P B Iynedjian ◽  
P Ferre ◽  
J Girard

Glucokinase (EC 2.7.1.2) first appears in the liver of the rat 2 weeks after birth and increases after weaning on to a high-carbohydrate diet. We investigated the hormonal regulation of glucokinase (GK) mRNA in primary cultures of hepatocytes from 10-12-day-old suckling rats. GK mRNA was undetectable in such cells after 48 h of culture in serum-free medium devoid of hormones. Addition of insulin or tri-iodothyronine (T3) to the medium resulted in induction of GK mRNA. The effects of insulin and T3 were dose-dependent and additive. Dexamethasone alone did not induce GK mRNA, but enhanced the response to insulin and decreased the response to T3. Induction of GK mRNA by insulin was not affected when the medium glucose concentration was varied between 5 and 15 mM, nor when culture was conducted in glucose-free medium supplemented with lactate and pyruvate or galactose. The time course of initial accumulation of GK mRNA in response to insulin was characterized by a lag of 12 h and an induction plateau reached after 36 h. If hepatocytes were then withdrawn from insulin for 24 h and subsequently subjected to a secondary stimulation by insulin, GK mRNA re-accumulated with much faster kinetics and reached the fully induced level within 8 h. Both primary and secondary responses to insulin were abolished by actinomycin D. These results provide insight into the role of hormonal stimuli in the ontogenic development of hepatic glucokinase.

1978 ◽  
Vol 170 (3) ◽  
pp. 615-625 ◽  
Author(s):  
S Foden ◽  
P J Randle

1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium.


2001 ◽  
Vol 60 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Luc Ferrari ◽  
Ning Peng ◽  
James R. Halpert ◽  
Edward T. Morgan

2012 ◽  
Vol 303 (9) ◽  
pp. C916-C923 ◽  
Author(s):  
Vladislav V. Makarenko ◽  
Jayasri Nanduri ◽  
Gayatri Raghuraman ◽  
Aaron P. Fox ◽  
Moataz M. Gadalla ◽  
...  

H2S generated by the enzyme cystathionine-γ-lyase (CSE) has been implicated in O2 sensing by the carotid body. The objectives of the present study were to determine whether glomus cells, the primary site of hypoxic sensing in the carotid body, generate H2S in an O2-sensitive manner and whether endogenous H2S is required for O2 sensing by glomus cells. Experiments were performed on glomus cells harvested from anesthetized adult rats as well as age and sex-matched CSE+/+ and CSE−/− mice. Physiological levels of hypoxia (Po2 ∼30 mmHg) increased H2S levels in glomus cells, and dl-propargylglycine (PAG), a CSE inhibitor, prevented this response in a dose-dependent manner. Catecholamine (CA) secretion from glomus cells was monitored by carbon-fiber amperometry. Hypoxia increased CA secretion from rat and mouse glomus cells, and this response was markedly attenuated by PAG and in cells from CSE−/− mice. CA secretion evoked by 40 mM KCl, however, was unaffected by PAG or CSE deletion. Exogenous application of a H2S donor (50 μM NaHS) increased cytosolic Ca2+ concentration ([Ca2+]i) in glomus cells, with a time course and magnitude that are similar to that produced by hypoxia. [Ca2+]i responses to NaHS and hypoxia were markedly attenuated in the presence of Ca2+-free medium or cadmium chloride, a pan voltage-gated Ca2+ channel blocker, or nifedipine, an L-type Ca2+ channel inhibitor, suggesting that both hypoxia and H2S share common Ca2+-activating mechanisms. These results demonstrate that H2S generated by CSE is a physiologic mediator of the glomus cell's response to hypoxia.


1995 ◽  
Vol 268 (3) ◽  
pp. E391-E396
Author(s):  
H. Ayame ◽  
A. Matsutani ◽  
H. Inoue ◽  
T. Kaneko ◽  
K. Kaku

In previous studies, we demonstrated that tolbutamide inhibits a phosphorylation of hepatic 6-phosphofructo-2-kinase (6PF-2-K)/fructose-2,6-bisphosphatase (Fru-2,6-P2ase) catalyzed by the adenosine 3',5'-cyclic monophosphate-dependent protein kinase in a reconstruction system using the purified enzyme from the rat liver. In the current study, to assess a role of tolbutamide on hepatic 6PF-2-K/Fru-2,6-P2ase physiologically, we used intact rat hepatocytes and examined effects of tolbutamide on a phosphorylation of the bifunctional enzyme in the presence of glucagon. Glucagon induced a rapid phosphorylation of hepatic 6PF-2-K/Fru-2,6-P2ase accompanied by an inhibition of 6PF-2-K activity and a stimulation of Fru-2,6-P2ase activity in a dose-dependent manner. Tolbutamide inhibited glucagon-induced phosphorylation of the bifunctional enzyme protein in a dose-dependent manner. By adding 2 mM tolbutamide, reduced activity of 6PF-2-K and increased activity of Fru-2,6-P2ase in the presence of 10(-9) M glucagon were partially restored. The present results suggest the possibility that tolbutamide modulates the activity of hepatic 6PF-2-K/Fru-2,6-P2ase through inhibiting a phosphorylation of the enzyme protein. The counterregulatory influence of tolbutamide on the effect of glucagon suggests a possible mechanism for the extrapancreatic effect of sulfonylurea drugs.


1991 ◽  
Vol 58 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Malle Jurima-Romet ◽  
Hide S. Huang ◽  
Charles J. Paul ◽  
Barry H. Thomas

1987 ◽  
Vol 253 (6) ◽  
pp. H1391-H1399 ◽  
Author(s):  
T. A. Marino ◽  
L. Kuseryk ◽  
I. K. Lauva

The aim of this study was to determine the role of contraction in the regulation of neonatal rat cardiocyte growth in size. To accomplish this objective, experiments were done on four groups of cardiocytes: 1) quiescent cardiocytes attached to a substrate, 2) contracting cardiocytes attached to a substrate, 3) quiescent cardiocytes not attached to a substrate, adn 4) contracting cardiocytes not attached to a substrate. The cardiocytes were grown in both serum-free and serum-supplemented media for up to 1 wk, and cardiocyte surface area, volume, number, and fine structure were evaluated. The most important result of this study was that cardiocytes, which are attached to a substrate and stimulated to contract, grow in size. However, neither contraction alone nor attachment to a substrate by itself resulted in neonatal cardiocyte growth in size in defined serum-free medium. Another important finding was that other nonspecific growth promoters, such as those found in serum, stimulated more substantial growth in cardiocyte size in contracting cardiocytes that were attached to a substrate.


2002 ◽  
Vol 362 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Martin HOUWELING ◽  
Wil KLEIN ◽  
Math J. H. GEELEN

The present study was undertaken to study the role of AMP-activated kinase (AMPK) in the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Incubation of rat hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an activator of AMPK, produced dose-dependent inhibition of the incorporation of [3H]choline and [3H]ethanolamine into PC and PE, respectively. Determination of the cellular uptake of choline and ethanolamine showed that the reduced synthesis of PC and PE did not result from impaired uptake of these two precursors. The decreased synthesis of PC was not mirrored by a reduction in the activities of the enzymes of the CDP-choline pathway. The diminution of PE biosynthesis, however, was paralleled by a depressed activity of CTP:phosphoethanolamine cytidylyltransferase (ET), the pace-setting enzyme of the CDP-ethanolamine pathway. AICAR treatment of hepatocytes stimulated the conversion of choline into betaine, indicating that reduced PC synthesis most probably resulted from a decrease in the availability of choline. In addition, AICAR induced a 50% reduction in the cellular level of diacylglycerols, which may further impair the synthesis of PC and PE. The results thus indicate that AICAR inhibits the biosynthesis of PC and PE and that the effect is exerted at different sites in the two pathways. Increased oxidation of choline to betaine is the main target of AICAR in the PC pathway, whereas inhibition of ET activity is the locus of AICAR action in the PE pathway.


Sign in / Sign up

Export Citation Format

Share Document