scholarly journals Suppression by wortmannin of platelet responses to stimuli due to inhibition of pleckstrin phosphorylation

1992 ◽  
Vol 285 (3) ◽  
pp. 745-751 ◽  
Author(s):  
Y Yatomi ◽  
O Hazeki ◽  
S Kume ◽  
M Ui

Studies were made of inhibition by wortmannin, a fungal metabolite, of human platelet responses to various stimuli. Wortmannin at concentrations as low as 1-100 nM inhibited several receptor-agonist-induced 5-hydroxytryptamine release from platelets, without affecting agonist-induced increases in the intracellular concentration of Ca2+. Phorbol 12-myristate 13-acetate (PMA), an active tumour promoter, caused 5-hydroxytryptamine release when combined with a low concentration of ionomycin, and platelet aggregation by itself; these effects of the phorbol ester were also inhibited by wortmannin as well as by staurosporine, a potent, although non-specific, protein kinase C (PKC) inhibitor, in a similar molar concentration range. The platelet responses to the receptor agonists or PMA were accompanied by increased incorporation of [32P]Pi into pleckstrin, a protein selectively expressed in platelets and other blood cells arising from haematopoietic stem cells, as a result of PKC activation in the intact cells. The pleckstrin phosphorylation was inhibited by wortmannin in ways mostly similar to those in which it inhibited the 5-hydroxytryptamine-release responses. Nevertheless, wortmannin failed to inhibit PKC activity measurable in a cell-free assay system which is highly susceptible to staurosporine. Nor did it inhibit the translocation of cytosolic PKC to membranes induced by addition of PMA to platelet cells. Thus wortmannin, which is not a direct inhibitor of PKC, could interfere with the kinase-dependent phosphorylation of pleckstrin, which may play an important role in the cellular responses to receptor stimulation.

2021 ◽  
Author(s):  
Mayanka Awasthi ◽  
Peeyush Ranjan ◽  
Simon Kelterborn ◽  
Peter Hegemann ◽  
William J Snell

The principal function of the primary cilium is to convert cues from the extracellular milieu into changes in cyclic nucleotide concentration and cytoplasmic responses, but fundamental questions remain about the mechanisms of transmission of cilium-to-cytoplasm signals. During fertilization in Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ~10-fold increase in cellular cAMP and activation for cell fusion. Here, we identify Gamete-Specific Protein Kinase (GSPK) as an essential link between cilary receptor engagement and gamete activation. The ciiary adhesion-induced increase in cAMP and cell fusion are severely impaired in gspk mutants but fusion is rescued by a cell-permeable form of cAMP, indicating that GSPK functions upstream of the cAMP increase. GSPK is cytoplasmic, and, remarkably, the entire cellular complement is phosphorylated in less than 60 seconds after ciliary contact. Thus, a cytoplasmic protein kinase rapidly converts a ciliary membrane cue into a global cellular response.


1990 ◽  
Vol 10 (12) ◽  
pp. 3782-3792 ◽  
Author(s):  
A Represa ◽  
JC Deloulme ◽  
M Sensenbrenner ◽  
Y Ben-Ari ◽  
J Baudier

1994 ◽  
Vol 266 (2) ◽  
pp. H597-H605 ◽  
Author(s):  
V. Van der Bent ◽  
D. J. Church ◽  
M. B. Vallotton ◽  
P. Meda ◽  
D. C. Kem ◽  
...  

Exposure of cultured, spontaneously beating rat cardiomyocytes to arginine vasopressin (AVP) led to marked increases in the release of prostacyclin (PGI2) and atrial natriuretic peptide (ANP). These responses were accompanied by a rapid, transient rise of cytosolic free Ca2+ concentration ([Ca2+]i) and of membranous protein kinase C (PKC) activity. Ca2+ influx and PKC activity appeared to play important but distinct roles in AVP-induced cellular responses, insofar as only AVP-induced ANP secretion was abolished by the Ca2+ channel antagonist nifedipine, whereas both AVP-induced PGI2 production and ANP release were abolished by the PKC inhibitors staurosporine and CGP-41251. The AVP-induced increase in [Ca2+]i could also be mimicked with the vasopressin (V1-subtype) agonist Octapressin, but not with the V2-agonist 1-desamino-8-D-arginine vasopressin, and was fully abolished by the V1-antagonist [d(CH2)5Tyr(Me)]AVP, but not by d(CH2)5-D-Leu-VAVP (V1-/V2-antagonist). These results indicate that V1-vasopressinergic receptors mediate AVP-induced PGI2 production and ANP secretion in rat cardiomyocytes and that, whereas both Ca2+ influx and PKC activation are required for AVP-induced ANP secretion, AVP-induced PGI2 formation is mainly regulated by PKC.


1995 ◽  
Vol 270 (17) ◽  
pp. 10314-10322 ◽  
Author(s):  
Takayuki Sato ◽  
Dian-Mo Xiao ◽  
Hua Li ◽  
Freesia L. Huang ◽  
Kuo-Ping Huang

FEBS Letters ◽  
1988 ◽  
Vol 231 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Yoshinori Asaoka ◽  
Ushio Kikkawa ◽  
Kazuo Sekiguchi ◽  
Mark S. Shearman ◽  
Yoshiyuki Kosaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document