scholarly journals Identification of multifunctional ATP-citrate lyase kinase as the α-isoform of glycogen synthase kinase-3

1992 ◽  
Vol 288 (1) ◽  
pp. 309-314 ◽  
Author(s):  
K Hughes ◽  
S Ramakrishna ◽  
W B Benjamin ◽  
J R Woodgett

Multifunctional ATP-citrate lyase kinase (ACLK) exhibits several properties that are similar to glycogen-synthase kinase-3 (GSK-3). The molecular cloning of two distinct mammalian GSK-3 cDNAs and a Drosophila melanogaster (fruitfly) homologue, zeste-white3sgg, has established the existence of a GSK-3 subfamily. A multifunctional protein kinase first identified as an ACLK has recently been shown to exhibit several similarities to the alpha- and beta-forms of GSK-3. Here we have used immunological and biochemical analyses to directly compare these enzymes. Thus purified preparations of ACLK isolated from brain and liver preferentially cross-react with anti-GSK-3 alpha antisera and phosphorylate previously defined substrates of GSK-3 at identical sites. Conversely, both alpha- and beta-forms of GSK-3 phosphorylated ATP-citrate lyase at the same site(s) targeted by ACLK. These, and other similarities, demonstrate ACLK to be identical with, or highly related to, GSK-3 alpha, the implications of which are discussed.

1994 ◽  
Vol 14 (12) ◽  
pp. 7909-7919 ◽  
Author(s):  
K S Bowdish ◽  
H E Yuan ◽  
A P Mitchell

Many yeast genes that are essential for meiosis are expressed only in meiotic cells. Known regulators of early meiotic genes include IME1, which is required for their expression, and SIN3 and UME6, which prevent their expression in nonmeiotic cells. We report here the molecular characterization of the RIM11 gene, which we find is required for expression of several early meiotic genes. A close functional relationship between RIM11 and IME1 is supported by two observations. First, sin3 and ume6 mutations are epistatic to rim11 mutations; prior studies have demonstrated their epistasis to ime1 mutations. Second, overexpression of RIM11 can suppress an ime1 missense mutation (ime1-L321F) but not an ime1 deletion. Sequence analysis indicates that RIM11 specifies a protein kinase related to rat glycogen synthase kinase 3 and the Drosophila shaggy/zw3 gene product. Three partially defective rim11 mutations alter residues involved in ATP binding or catalysis, and a completely defective rim11 mutation alters a tyrosine residue that corresponds to the site of an essential phosphorylation for glycogen synthase kinase 3. Immune complexes containing a hemagglutinin (HA) epitope-tagged RIM11 derivative, HA-RIM11, phosphorylate two proteins, p58 and p60, whose biological function is undetermined. In addition, HA-RIM11 immune complexes phosphorylate a functional IME1 derivative but not the corresponding ime1-L321F derivative. We propose that RIM11 stimulates meiotic gene expression through phosphorylation of IME1.


1996 ◽  
Vol 313 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Alexander V. SKURAT ◽  
Peter J. ROACH

Glycogen synthase can be inactivated by sequential phosphorylation at the C-terminal residues Ser652 (site 4), Ser648 (site 3c), Ser644 (site 3b) and Ser640 (site 3a) catalysed by glycogen synthase kinase-3. In vitro, glycogen synthase kinase-3 action requires that glycogen synthase has first been phosphorylated at Ser656 (site 5) by casein kinase II. Recently we demonstrated that inactivation is linked only to phosphorylation at site 3a and site 3b, and that, in COS cells, modification of these sites can occur by alternative mechanisms independent of any C-terminal phosphorylations [Skurat and Roach (1995) J. Biol. Chem. 270, 12491-12497]. To address these mechanisms multiple Ser → Ala mutations were introduced in glycogen synthase such that only site 3a or site 3b remained intact. Additional mutation of Arg637 → Gln eliminated phosphorylation of site 3a, indicating that Arg637 may be important for recognition of site 3a by its corresponding protein kinase(s). Similarly, additional mutation of Pro645 → Ala eliminated phosphorylation of site 3b, indicating a possible involvement of ‘proline-directed’ protein kinase(s). Mutation of Arg637 alone did not activate glycogen synthase as expected from the loss of phosphorylation at site 3a. Rather, mutation of both Arg637 and the Ser → Ala substitution at site 3b was required for substantial activation. The results suggest that sites 3a and 3b can be phosphorylated independently of one another by distinct protein kinases. However, phosphorylation of site 3b can potentiate phosphorylation of site 3a, by an enzyme such as glycogen synthase kinase-3.


1994 ◽  
Vol 300 (2) ◽  
pp. 477-482 ◽  
Author(s):  
W B Benjamin ◽  
S N Pentyala ◽  
J R Woodgett ◽  
Y Hod ◽  
D Marshak

ATP citrate-lyase (CL), acetyl-CoA carboxylase (ACC) and glycogen synthase kinase-3 beta (GSK-3 beta) levels were measured in cytosol from 3T3-L1 cells during differentiation from fibroblasts into fat-cells. Protein levels were estimated from immunoblots using specific antisera. Cytosol from confluent cells contain significant amounts of GSK-3 beta, which fell during differentiation of these cells into adipocytes. CL from confluent cells was found to be mostly in the form of a single protein band of apparent mass 110 kDa. Levels of CL and ACC increased during cell differentiation into adipocytes. During the first 3 days of differentiation, CL migration changed, and it was expressed as a complex of protein bands of apparent mass 110 kDa, 113 kDa and 115 kDa. At later stages of differentiation, when these cells had assumed the phenotype of fat-cells, they expressed CL mainly as protein bands of 110 and 113 kDa. When samples containing these bands were treated with alkaline phosphatase, the 113 kDa protein band collapsed into the 110 kDa species. This suggests that the slower-migrating species of CL is a higher-order phosphorylation state of the same protein. Furthermore, when purified CL, mostly expressed as the 110 kDa species, was phosphorylated with cyclic AMP-dependent protein kinase alone or together with GSK-3 and resolved by SDS/PAGE, the phosphorylated CL now migrated more slowly as the 113 kDa and 115 kDa forms. CL phosphorylation was hormone-regulated, since, in samples from fat-cells that had the complex two-band pattern, when cultured in medium without serum or hormones, CL migration reverted to a single band of 110 kDa, similar to confluent cells. Treatment of these ‘down-regulated’ cells with insulin rapidly induced substantial amounts of the 113 kDa species, with a concomitant decrease in the 110 kDa species.


Sign in / Sign up

Export Citation Format

Share Document