scholarly journals Nerve growth factor activates calcium-insensitive protein kinase C-ɛ in PC-12 rat pheochromocytoma cells

1993 ◽  
Vol 295 (3) ◽  
pp. 767-772 ◽  
Author(s):  
M Ohmichi ◽  
G Zhu ◽  
A R Saltiel

Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta and -zeta. Both histone phosphorylation and autophosphorylation of PKC-epsilon were increased by treatment of PC-12 cells with NGF. This increased phosphorylation observed in vitro is rapid, occurring maximally at 2.5 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over physiological concentrations of the growth factor. Although the mechanistic basis for this specificity in PKC activation is not clear, NGF acutely stimulated the production of diacylglycerol without causing corresponding changes in intracellular Ca2+ concentrations. These results suggest that NGF may selectively stimulate the Ca(2+)-insensitive epsilon isoform of PKC by a phosphatidylinositol-independent mechanism.

1994 ◽  
Vol 300 (3) ◽  
pp. 751-756 ◽  
Author(s):  
Z Kiss ◽  
W H Anderson

It is well established that activators of protein kinase C (PKC) also enhance the activity of phospholipase D (PLD), and that this regulatory mechanism is altered in transformed cells. Here we used the C3H/10T1/2 mouse embryo fibroblast line, a cellular model for the study of carcinogenesis, to examine possible effects of carcinogens on the PKC isoenzyme pattern and on the regulation of PLD by the PKC activators phorbol 12-myristate 13-acetate (PMA) and platelet-derived growth factor (PDGF). Treatment of these fibroblasts with 0.5 microgram/ml 7,12-dimethyl-benz[a]anthracene or benzo[a]pyrene for 24 h greatly decreased (> 80%) the amount of immunoreactive PKC-epsilon. Of the remaining three isoenzymes identified, carcinogens alone had no effect on the cellular status of PKC-alpha and PKC-delta, although they appeared to promote slightly PMA-induced membrane translocation of the cytosolic forms of these isoenzymes in exponentially growing cells. Carcinogens and/or PMA had no effects on the cellular content or distribution of PKC-zeta. Chronic (24 h) treatments with carcinogens resulted in increased or decreased release of [14C]ethanolamine or [14C]choline from the appropriate prelabelled phospholipids, respectively. However, carcinogens failed to block the stimulatory effects of PMA and PDGF on the hydrolysis of phosphatidylethanolamine and phosphatidylcholine or on the synthesis of phosphatidylethanol mediated by PLD. These data indicate that in fibroblasts PKC-epsilon is not a major regulator of PLD activity.


2001 ◽  
Vol 276 (11) ◽  
pp. 7709-7712 ◽  
Author(s):  
Marie W. Wooten ◽  
M. Lamar Seibenhener ◽  
Vidya Mamidipudi ◽  
Maria T. Diaz-Meco ◽  
Philip A. Barker ◽  
...  

1995 ◽  
Vol 269 (4) ◽  
pp. C1018-C1024 ◽  
Author(s):  
K. Persson ◽  
J. J. Sando ◽  
J. B. Tuttle ◽  
W. D. Steers

Cyclic stretch of cultured urinary tract smooth muscle cells has been used to mimic some of the events that occur with bladder obstruction. The stretch stimulus induces production of nerve growth factor (NGF), which has been implicated in changes in bladder innervation. Stretch-induced NGF production was blocked by actinomycin. Involvement of protein kinase C (PKC) in the stretch-induced NGF production is strongly suggested by the following observations. Phorbol ester activators of PKC mimicked the stretch response as did platelet-derived growth factor (PDGF), which acts, in part, through generation of endogenous diacylglycerols. Both stretch- and PDGF-induced NGF production were blocked by prolonged incubation with phorbol ester to downregulate PKC. Western blot analysis confirmed partial downregulation of the Ca(2+)-dependent PKC-alpha and PKC-beta 1 and near complete downregulation of the Ca(2+)-independent PKC isozymes delta, epsilon, and zeta. The involvement of PKC in transducing a physical stimulus (stretch) into a biochemical response (NGF production) has implications for novel types of therapeutic intervention in ailments such as bladder obstruction.


Sign in / Sign up

Export Citation Format

Share Document