scholarly journals The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2

1993 ◽  
Vol 296 (3) ◽  
pp. 843-849 ◽  
Author(s):  
D Stokoe ◽  
B Caudwell ◽  
P T W Cohen ◽  
P Cohen

The substrate specificity of mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MAPKAP kinase-2) was investigated by using synthetic peptides related to the N-terminus of glycogen synthase. The minimum sequence required for efficient phosphorylation was found to be Xaa-Xaa-Hyd-Xaa-Arg-Xaa-Xaa-Ser-Xaa-Xaa, where Hyd is a bulky hydrophobic residue (Phe > Leu > Val >> Ala), and the peptide Lys-Lys-Phe-Asn-Arg-Thr-Leu-Ser-Val-Ala was phosphorylated with a Km of 9.3 microM and Vmax. of 10 mumol/min per mg. MAPKAP kinase-1 (a homologue of ribosomal protein S6 kinase) also requires an arginine three residues N-terminal to the serine (position n-3), but not a hydrophobic residue at position n-5. Neither MAPKAP kinase-1 nor MAPKAP kinase-2 could tolerate a proline residue at position n + 1, indicating that their specificities do not overlap with that of MAP kinase. The specificity of calmodulin-dependent protein kinase-II resembled that of MAPKAP kinase-2, except that it could tolerate replacement of the arginine by a lysine and the phosphorylation-site serine by a threonine residue. Partial cDNAs encoding MAPKAP kinase-2 were isolated from rabbit and human skeletal muscle and human teratocarcinoma libraries, and Northern-blotting experiments revealed a single 3.3 kb mRNA transcript present at similar levels in six human tissues examined. The catalytic domain was most similar (35-40% identity) to calmodulin-dependent protein kinases II and IV, phosphorylase kinase, putative serine kinase H1 and the C-terminal domain of MAPKAP kinase-1, which form one branch of the protein kinase phylogenetic tree. The sequence N-terminal to the catalytic domain is proline-rich and contains two putative SH3-binding sites. The threonine residue phosphorylated by MAP kinase lies immediately C-terminal to the catalytic domain and is followed by a nuclear localization signal, Lys-Lys-(Xaa)10-Lys-Arg-Arg-Lys-Lys, near the C-terminus.

2000 ◽  
Vol 349 (2) ◽  
pp. 547-557 ◽  
Author(s):  
Jose M. LIZCANO ◽  
Nick MORRICE ◽  
Philip COHEN

The interaction of BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) with Bcl-2/Bcl-XL is thought to neutralize the anti-apoptotic effects of the latter proteins, and may represent one of the mechanisms by which BAD promotes apoptosis. A variety of survival signals are reported to induce the phosphorylation of BAD at Ser112 or Ser136, triggering its dissociation from Bcl-2/Bcl-XL. Ser136 is thought to be phosphorylated by protein kinase B (PKB, also called Akt), which is activated when cells are exposed to agonists that stimulate phosphatidylinositol 3-kinase (PI3K). In contrast, Ser112 is reported to be phosphorylated by mitogen-activated protein (MAP) kinase-activated protein kinase-1 (MAPKAP-K1, also called RSK) and by cAMP-dependent protein kinase (PKA). Here we identify Ser155 as a third phosphorylation site on BAD. We find that Ser155 is phosphorylated preferentially by PKA in vitro and is the only residue in BAD that becomes phosphorylated when cells are exposed to cAMP-elevating agents. The phosphorylation of BAD at Ser155 prevents it from binding to Bcl-XL and promotes its interaction with 14-3-3 proteins. We also provide further evidence that MAPKAP-K1 mediates the phosphorylation of Ser112 in response to agonists that activate the classical MAP kinase pathway. However insulin-like growth factor 1, a potent activator of PI3K and PKB does not increase the phosphorylation of Ser136 in BAD-transfected HEK-293 cells, and nor is the basal level of Ser136 phosphorylation suppressed by inhibitors of PI3K.


2001 ◽  
Vol 359 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Sunke HIMPEL ◽  
Pascal PANZER ◽  
Klaus EIRMBTER ◽  
Hanna CZAJKOWSKA ◽  
Muhammed SAYED ◽  
...  

Protein kinases of the DYRK (‘dual-specificity tyrosine-regulated kinase’) family are characterized by a conserved Tyr-Xaa-Tyr motif (Tyr-319–Tyr-321) in a position exactly corresponding to the activation motif of the mitogen-activated protein kinase (MAP kinase) family (Thr-Xaa-Tyr). In a molecular model of the catalytic domain of DYRK1A, the orientation of phosphorylated Tyr-321 is strikingly similar to that of Tyr-185 in the known structure of the activated MAP kinase, extracellular-signal-regulated kinase 2. Consistent with our model, substitution of Tyr-321 but not of Tyr-319 by phenylalanine markedly reduced the enzymic activity of recombinant DYRK1A expressed in either Escherichia coli or mammalian cells. Direct identification of phosphorylated residues by tandem MS confirmed that Tyr-321, but not Tyr-319, was phosphorylated. When expressed in COS-7 cells, DYRK1A was found to be fully phosphorylated on Tyr-321. A catalytically inactive mutant of DYRK1A contained no detectable phosphotyrosine, indicating that Tyr-321 is autophosphorylated by DYRK1A. MS identified Tyr-111 and Ser-97 as additional autophosphorylation sites in the non-catalytic N-terminal domain of bacterially expressed DYRK1A. Enzymic activity was not affected in the DYRK1A-Y111F mutant. The present experimental data and the molecular model indicate that the activity of DYRK1A is dependent on the autophosphorylation of a conserved tyrosine residue in the activation loop.


2005 ◽  
Vol 25 (14) ◽  
pp. 6047-6064 ◽  
Author(s):  
Zheng Fu ◽  
Melanie J. Schroeder ◽  
Jeffrey Shabanowitz ◽  
Philipp Kaldis ◽  
Kasumi Togawa ◽  
...  

ABSTRACT Male germ cell-associated kinase (MAK) and intestinal cell kinase (ICK) are nuclear Cdc2-related kinases with nearly identical N-terminal catalytic domains and more divergent C-terminal noncatalytic domains. The catalytic domain is also related to mitogen-activated protein kinases (MAPKs) and contains a corresponding TDY motif. Nuclear localization of ICK requires subdomain XI and interactions of the conserved Arg-272, but not kinase activity or, surprisingly, any of the noncatalytic domain. Further, nuclear localization of ICK is required for its activation. ICK is activated by dual phosphorylation of the TDY motif. Phosphorylation of Tyr-159 in the TDY motif requires ICK autokinase activity but confers only basal kinase activity. Full activation requires additional phosphorylation of Thr-157 in the TDY motif. Coexpression of ICK with constitutively active MEK1 or MEK5 fails to increase ICK phosphorylation or activity, suggesting that MEKs are not involved. ICK and MAK are related to Ime2p in budding yeast, and cyclin-dependent protein kinase-activating kinase Cak1p has been placed genetically upstream of Ime2p. Recombinant Cak1p phosphorylates Thr-157 in the TDY motif of recombinant ICK and activates its activity in vitro. Coexpression of ICK with wild-type CAK1 but not kinase-inactive CAK1 in cells also increases ICK phosphorylation and activity. Our studies establish ICK as the prototype for a new group of MAPK-like kinases requiring dual phosphorylation at TDY motifs.


1999 ◽  
Vol 147 (6) ◽  
pp. 1129-1136 ◽  
Author(s):  
Carmen Blanco-Aparicio ◽  
Josema Torres ◽  
Rafael Pulido

Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser231 residue, located within the KIM. Upon phosphorylation of Ser231, PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal–regulated kinase (ERK)1/2 and p38α were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Cα catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38α by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.


1998 ◽  
Vol 275 (2) ◽  
pp. H641-H652 ◽  
Author(s):  
Geir Øystein Andersen ◽  
Mette Enger ◽  
G. Hege Thoresen ◽  
Tor Skomedal ◽  
Jan-Bjørn Osnes

The translocation mechanisms involved in the α1-adrenoceptor-stimulated efflux of the potassium analog86Rb+were studied in isolated rat hearts. Phenylephrine (in the presence of a β-blocker) increased the efflux of86Rb+and42K+, and the Na-K-2Cl (or K-Cl) cotransport inhibitor bumetanide reduced the response by 42 ± 11%. Furosemide inhibited the response with a lower potency than that of bumetanide. The bumetanide-insensitive efflux was largely sensitive to the K+ channel inhibitor 4-aminopyridine. Inhibitors of the Na+/H+exchanger or the Na+-K+pump had no effect on the increased86Rb+efflux. The activation of the Na-K-2Cl cotransporter was dependent on the extracellular signal-regulated kinase (ERK) subgroup of the mitogen-activated protein (MAP) kinase family. Phenylephrine stimulation increased ERK activity 3.4-fold. PD-98059, an inhibitor of the ERK cascade, reduced both the increased86Rb+efflux and ERK activity. Specific inhibitors of protein kinase C and Ca2+/calmodulin-dependent kinase II had no effect. In conclusion, α1-adrenoceptor stimulation increases86Rb+efflux from the rat heart via K+channels and a Na-K-2Cl cotransporter. Activation of the Na-K-2Cl cotransporter is apparently dependent on the MAP kinase pathway.


2000 ◽  
Vol 279 (2) ◽  
pp. C352-C360 ◽  
Author(s):  
Ilia A. Yamboliev ◽  
Kevin M. Wiesmann ◽  
Cherie A. Singer ◽  
Jason C. Hedges ◽  
William T. Gerthoffer

In canine colon, M2/M3 muscarinic receptors are coupled to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. We tested the hypothesis that this coupling is mediated by enzymes of the phosphatidylinositol (PI) 3-kinase family. RT-PCR and Western blotting demonstrated expression of two isoforms, PI 3-kinase-α and PI 3-kinase-γ. Muscarinic stimulation of intact muscle strips (10 μM ACh) activated PI 3-kinase-γ, ERK and p38 MAP kinases, and MAP kinase-activated protein kinase-2, whereas PI 3-kinase-α activation was not detected. Wortmannin (25 μM) abolished the activation of PI 3-kinase-γ, ERK, and p38 MAP kinases. MAP kinase inhibition was a PI 3-kinase-γ-specific effect, since wortmannin did not inhibit recombinant activated murine ERK2 MAP kinase, protein kinase C, Raf-1, or MAP kinase kinase. In cultured muscle cells, newborn calf serum (3%) activated PI 3-kinase-α and PI 3-kinase-γ isoforms, ERK and p38 MAP kinases, and stimulated chemotactic cell migration. Using wortmannin and LY-294002 to inhibit PI 3-kinase activity and PD-098059 and SB-203580 to inhibit ERK and p38 MAP kinases, we established that these enzymes are functionally important for regulation of chemotactic migration of colonic myocytes.


Sign in / Sign up

Export Citation Format

Share Document