Phosphatidylinositol 3-kinases regulate ERK and p38 MAP kinases in canine colonic smooth muscle

2000 ◽  
Vol 279 (2) ◽  
pp. C352-C360 ◽  
Author(s):  
Ilia A. Yamboliev ◽  
Kevin M. Wiesmann ◽  
Cherie A. Singer ◽  
Jason C. Hedges ◽  
William T. Gerthoffer

In canine colon, M2/M3 muscarinic receptors are coupled to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. We tested the hypothesis that this coupling is mediated by enzymes of the phosphatidylinositol (PI) 3-kinase family. RT-PCR and Western blotting demonstrated expression of two isoforms, PI 3-kinase-α and PI 3-kinase-γ. Muscarinic stimulation of intact muscle strips (10 μM ACh) activated PI 3-kinase-γ, ERK and p38 MAP kinases, and MAP kinase-activated protein kinase-2, whereas PI 3-kinase-α activation was not detected. Wortmannin (25 μM) abolished the activation of PI 3-kinase-γ, ERK, and p38 MAP kinases. MAP kinase inhibition was a PI 3-kinase-γ-specific effect, since wortmannin did not inhibit recombinant activated murine ERK2 MAP kinase, protein kinase C, Raf-1, or MAP kinase kinase. In cultured muscle cells, newborn calf serum (3%) activated PI 3-kinase-α and PI 3-kinase-γ isoforms, ERK and p38 MAP kinases, and stimulated chemotactic cell migration. Using wortmannin and LY-294002 to inhibit PI 3-kinase activity and PD-098059 and SB-203580 to inhibit ERK and p38 MAP kinases, we established that these enzymes are functionally important for regulation of chemotactic migration of colonic myocytes.

1993 ◽  
Vol 13 (5) ◽  
pp. 3067-3075 ◽  
Author(s):  
K S Lee ◽  
K Irie ◽  
Y Gotoh ◽  
Y Watanabe ◽  
H Araki ◽  
...  

Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.


1998 ◽  
Vol 188 (7) ◽  
pp. 1287-1295 ◽  
Author(s):  
Ari Hashimoto ◽  
Hidetaka Okada ◽  
Aimin Jiang ◽  
Mari Kurosaki ◽  
Steven Greenberg ◽  
...  

Mitogen-activated protein (MAP) kinase family members, including extracellular signal–regulated kinase (ERK), c-Jun NH2-terminal kinase (  JNK), and p38 MAP kinase, have been implicated in coupling the B cell antigen receptor (BCR) to transcriptional responses. However, the mechanisms that lead to the activation of these MAP kinase family members have been poorly elucidated. Here we demonstrate that the BCR-induced ERK activation is reduced by loss of Grb2 or expression of a dominant-negative form of Ras, RasN17, whereas this response is not affected by loss of Shc. The inhibition of the ERK response was also observed in phospholipase C (PLC)-γ2–deficient DT40 B cells, and expression of RasN17 in the PLC-γ2–deficient cells completely abrogated the ERK activation. The PLC-γ2 dependency of ERK activation was most likely due to protein kinase C (PKC) activation rather than calcium mobilization, since loss of inositol 1,4,5-trisphosphate receptors did not affect ERK activation. Similar to cooperation of Ras with PKC activation in ERK response, both PLC-γ2–dependent signal and GTPase are required for BCR-induced JNK and p38 responses. JNK response is dependent on Rac1 and calcium mobilization, whereas p38 response requires Rac1 and PKC activation.


2003 ◽  
Vol 370 (2) ◽  
pp. 497-503 ◽  
Author(s):  
Charles S.T. HII ◽  
Maurizio COSTABILE ◽  
George C. MAYNE ◽  
Channing J. DER ◽  
Andrew W. MURRAY ◽  
...  

The biochemical basis for the reduced lymphokine production by neonatal T cells compared with adult T cells remains poorly defined. Previous studies have raised the possibility that neonatal T cells could be deficient in their ability to transmit signals via protein kinase (PK) C. We now report that while PKC-dependent activation of the mitogen-activated protein (MAP) kinases, c-Jun N-terminal protein kinase and the extracellular signal-regulated protein kinase (ERK)1/ERK2, was deficient in cord blood T cells compared with adult blood T cells, marked activation of the MAP kinases in cord blood T cells was achieved via PKC-independent means. Consistent with a deficiency in the signalling capability of PKC, cord blood T cells were selectively deficient in the expression of PKCβI, ∊, θ and ζ. Stimulation of cord blood T cells resulted in a time-dependent increase in PKC expression, with increases detectable by 4h. This was accompanied by an enhancement in MAP kinase activation via PKC-dependent means. These novel data suggest that an inadequacy in PKC-MAP kinase signalling may be responsible, at least in part, for the phenotype of cord blood T cells.


1998 ◽  
Vol 275 (2) ◽  
pp. H641-H652 ◽  
Author(s):  
Geir Øystein Andersen ◽  
Mette Enger ◽  
G. Hege Thoresen ◽  
Tor Skomedal ◽  
Jan-Bjørn Osnes

The translocation mechanisms involved in the α1-adrenoceptor-stimulated efflux of the potassium analog86Rb+were studied in isolated rat hearts. Phenylephrine (in the presence of a β-blocker) increased the efflux of86Rb+and42K+, and the Na-K-2Cl (or K-Cl) cotransport inhibitor bumetanide reduced the response by 42 ± 11%. Furosemide inhibited the response with a lower potency than that of bumetanide. The bumetanide-insensitive efflux was largely sensitive to the K+ channel inhibitor 4-aminopyridine. Inhibitors of the Na+/H+exchanger or the Na+-K+pump had no effect on the increased86Rb+efflux. The activation of the Na-K-2Cl cotransporter was dependent on the extracellular signal-regulated kinase (ERK) subgroup of the mitogen-activated protein (MAP) kinase family. Phenylephrine stimulation increased ERK activity 3.4-fold. PD-98059, an inhibitor of the ERK cascade, reduced both the increased86Rb+efflux and ERK activity. Specific inhibitors of protein kinase C and Ca2+/calmodulin-dependent kinase II had no effect. In conclusion, α1-adrenoceptor stimulation increases86Rb+efflux from the rat heart via K+channels and a Na-K-2Cl cotransporter. Activation of the Na-K-2Cl cotransporter is apparently dependent on the MAP kinase pathway.


1993 ◽  
Vol 13 (5) ◽  
pp. 3067-3075 ◽  
Author(s):  
K S Lee ◽  
K Irie ◽  
Y Gotoh ◽  
Y Watanabe ◽  
H Araki ◽  
...  

Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.


1993 ◽  
Vol 296 (1) ◽  
pp. 25-31 ◽  
Author(s):  
J H Her ◽  
S Lakhani ◽  
K Zu ◽  
J Vila ◽  
P Dent ◽  
...  

p42mapk [mitogen activated protein (MAP) kinase; extracellular signal-regulated protein kinase (ERK)] is a serine/threonine-specific protein kinase that is activated by dual tyrosine and threonine phosphorylation in response to diverse agonists. Both the tyrosine and threonine phosphorylations are necessary for full enzymic activity. A MAP kinase activator recently purified and cloned has been shown to be a protein kinase (MAP kinase kinase) that is able to induce the dual phosphorylation of MAP kinase on both the regulatory tyrosine and threonine sites in vitro. In the present paper we have utilized MAP kinase mutants altered in the sites of regulatory phosphorylation to show, both in vivo and in vitro, that phosphorylation of the tyrosine and the threonine can occur independently of one another, with no required order of phosphorylation. We also utilized kinase-defective variants of MAP kinase with mutations in either the ATP-binding loop or the catalytic loop, and obtained data suggesting that the activity or structure of the catalytic loop of MAP kinase plays an important role in its own dual phosphorylation.


1992 ◽  
Vol 287 (2) ◽  
pp. 589-594 ◽  
Author(s):  
Y Wang ◽  
M S Simonson ◽  
J Pouysségur ◽  
M J Dunn

Mitogen-activated protein (MAP) kinases are regarded as switch kinases in the phosphorylation cascade initiated by various agonists. We have investigated whether endothelins (ET), which are constrictor and mitogenic isopeptides, can increase MAP kinase activity in rat mesangial cells, using bovine myelin basic protein (MBP) as a substrate for an in vitro kinase assay. Treatment of quiescent mesangial cells with ET-1 rapidly stimulated a kinase activity which phosphorylated exogenous MBP. This stimulation was dose-dependent, with threshold responses at 1 nM-ET-1. Epidermal growth factor and thrombin also activated this kinase in mesangial cells. We also examined the ET signal transduction pathways leading to activation of MBP kinase. Pertussis toxin had no effect on ET-stimulated MBP kinase activity. Stimulation of protein kinase C by phorbol ester increased MBP kinase activity, and down-regulation of PKC partially inhibited ET-stimulated MBP kinase as well as phorbol ester-stimulated MBP kinase activity. Interestingly, genestein, an inhibitor of protein tyrosine kinases, partially inhibited MBP kinase stimulated by ET but not by phorbol esters. These results suggest that ET stimulates MBP kinase activity in rat mesangial cells via at least two pathways: one which is protein kinase C-dependent and a second one that involves a protein tyrosine kinase. Finally, by raising rabbit antibodies against the two forms of MAP kinase, p44mapk and p42mapk, we demonstrated that both isoforms are expressed in mesangial cells. Antibody alpha 1 Cp42 specifically immunoprecipitated p42mapk and allowed us to demonstrate that ET stimulates MBP kinase activity in the p42mapk immunocomplex. In conclusion, we have provided evidence that, in rat mesangial cells, MAP kinases are rapidly activated by ET-1, a regulatory process that involves at least protein kinase C activation and also a contribution of a tyrosine kinase not yet characterized.


Sign in / Sign up

Export Citation Format

Share Document