scholarly journals Calcium-induced translocation of annexins to subcellular organelles of human neutrophils

1994 ◽  
Vol 300 (2) ◽  
pp. 325-330 ◽  
Author(s):  
C Sjölin ◽  
O Stendahl ◽  
C Dahlgren

The annexins are Ca(2+)-regulated, phospholipid-binding proteins which have been suggested to take part in cellular events such as exocytosis. The subcellular localization of annexins in human neutrophils was determined using monoclonal antibodies against annexins I, II, IV and VI and a polyclonal peptide antiserum against an annexin consensus sequence. Several annexins were translocated to the light membrane fraction enriched in plasma membranes and secretory vesicles. Annexins were associated also with the azurophil and specific granules. Whereas annexins I, IV and VI and one unidentified 35 kDa protein translocated to each of the isolated organelles, annexin II, a 66 kDa annexin IV-like protein, and a 38 kDa annexin I-like protein exhibited organelle-related differences in their association with membranes. The 38 kDa annexin associated only with specific granules and the secretory vesicles/plasma membrane but not with azurophil granules. Annexin II and the 66 kDa annexin IV-like protein associated with each of the neutrophil organelles, but the binding to specific granules and secretory vesicles/plasma membrane showed a Ca(2+)-dependency different from that of azurophil granules. This observation suggests that these proteins may contribute to the secretory process in neutrophils.

1994 ◽  
Vol 299 (2) ◽  
pp. 473-479 ◽  
Author(s):  
H Sengeløv ◽  
F Boulay ◽  
L Kjeldsen ◽  
N Borregaard

The subcellular localization of N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors in human neutrophils was investigated. The fMLP receptor was detected with a high-affinity, photoactivatable, radioiodinated derivative of N-formyl-methionyl-leucyl-phenylalanyl-lysine (fMLFK). Neutrophils were disrupted by nitrogen cavitation and fractionated on Percoll density gradients. fMLP receptors were located in the beta-band containing gelatinase and specific granules, and in the gamma-band containing plasma membrane and secretory vesicles. Plasma membranes and secretory vesicles were separated by high-voltage free-flow electrophoresis, and secretory vesicles were demonstrated to be highly enriched in fMLP receptors. The receptors found in secretory vesicles translocated fully to the plasma membrane upon stimulation with inflammatory mediators. The receptor translocation from the beta-band indicated that the receptor present there was mainly located in gelatinase granules. A 25 kDa fMLP-binding protein was found in the beta-band. Immunoprecipitation revealed that this protein was identical with NGAL (neutrophil gelatinase-associated lipocalin), a novel protein found in specific granules. In summary, we demonstrate that the compartment in human neutrophils that is mobilized most easily and fastest, the secretory vesicle, is a major reservoir of fMLP receptors. This explains the prompt and extensive upregulation of fMLP receptors on the neutrophil surface in response to inflammatory stimuli.


1996 ◽  
Vol 314 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R. Alexander BLACKWOOD ◽  
James E. SMOLEN ◽  
Ronald J. HESSLER ◽  
Donna M. HARSH ◽  
Amy TRANSUE

Several models have been developed to study neutrophil degranulation. At the most basic level, phospholipid vesicles have been used to investigate the lipid interactions occurring during membrane fusion. The two major forms of assays used to measure phospholipid vesicle fusion are based either on the dilution of tagged phospholipids within the membrane of the two fusing partners or the mixing of the aqueous contents of the vesicles. Although problems exist with both methods, the latter is considered to be more accurate and representative of true fusion. Using 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) as a fluorescent marker, we have taken advantage of the quenching properties of p-xylenebispyridinium bromide (‘DPX’) to develop a simple aqueous-space mixing assay that can be used with any sealed vesicle. We compared our new assay with more conventional assays using liposomes composed of phosphatidic acid (PA) and phosphatidylethanolamine (PE), obtaining comparable results with respect to Ca2+-dependent fusion. We extended our studies to measure the fusion of neutrophil plasma-membrane vesicles as well as azurophil and specific granules with PA/PE (1:3) liposomes. Both specific granules and plasma-membrane vesicles fused with PA/PE liposomes at [Ca2+] as low as 500 μM, while azurophil granules showed no fusion at [Ca2+] as high as 12 mM. These differences in the ability of Ca2+ to induce fusion may be related to differences observed in whole cells with respect to secretion.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

Abstract The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


1983 ◽  
Vol 97 (1) ◽  
pp. 52-61 ◽  
Author(s):  
N Borregaard ◽  
J M Heiple ◽  
E R Simons ◽  
R A Clark

We describe a new method for subcellular fractionation of human neutrophils. Neutrophils were disrupted by nitrogen cavitation and the nuclei removed by centrifugation. The postnuclear supernatant was applied on top of a discontinuous Percoll density gradient. Centrifugation for 15 min at 48,000 g resulted in complete separation of plasma membranes, azurophil granules, and specific granules. As determined by ultrastructure and the distribution of biochemical markers of these organelles, approximately 90% of the b-cytochrome in unstimulated cells was recovered from the band containing the specific granules and was shown to be in or tightly associated with the membrane. During stimulation of intact neutrophils with phorbol myristate acetate or the ionophore A23187, we observed translocation of 40-75% of the b-cytochrome to the plasma membrane. The extent of this translocation closely paralleled release of the specific granule marker, vitamin B12-binding protein. These data indicate that the b-cytochrome is in the membrane of the specific granules of unstimulated neutrophils and that stimulus-induced fusion of these granules with the plasma membrane results in a translocation of the cytochrome. Our observations provide a basis for the assembly of the microbicidal oxidase of the human neutrophil.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2487-2496 ◽  
Author(s):  
Véronique Witko-Sarsat ◽  
Elisabeth M. Cramer ◽  
Corinne Hieblot ◽  
Josette Guichard ◽  
Patrick Nusbaum ◽  
...  

Proteinase 3 (PR3), which is also called myeloblastin, the target autoantigen for antineutrophil cytoplasmic antibodies (ANCA) in Wegener’s granulomatosis, is a serine proteinase stored in azurophil granules of human neutrophils. We have previously shown that, in contrast to elastase or myeloperoxidase, PR3 is also expressed at the plasma membrane of a subset of unactivated neutrophils and that a high proportion of neutrophils expressing membrane PR3 is a risk factor for vasculitis. The present study demonstrates that the association of PR3 with the plasma membrane is not an ionic interaction and seems to be covalent. Fractionation of neutrophils shows that, besides the azurophil granules, PR3 could be detected both in specific granules and in the plasma membrane-enriched fraction containing secretory vesicles, whereas elastase and myeloperoxidase were exclusively located in azurophil granules. Electron microscopy confirms that PR3 is present along with CR1 in secretory vesicles as well as in some specific granules. In neutrophils stimulated with an increasing dose of FMLP, membrane PR3 expression increased with the degranulation of secretory vesicles, followed by specific granules, and culminated after azurophil granules mobilization. The presence of a readily plasma membrane-mobilizable pool of PR3 contained in the secretory vesicles might play a relevant role in the pathophysiological mechanisms of ANCA-associated vasculitis.


1995 ◽  
Vol 311 (2) ◽  
pp. 667-674 ◽  
Author(s):  
C Dahlgren ◽  
S R Carlsson ◽  
A Karlsson ◽  
H Lundqvist ◽  
C Sjölin

The subcellular localization of two members of a highly glycosylated protein group present in lysosomal membranes in most cells, the lysosome-associated membrane proteins 1 and 2 (Lamp-1 and Lamp-2), was examined in human neutrophil granulocytes. Antibodies that were raised against purified Lamp-1 adn Lamp-2 gave a distinct granular staining of the cytoplasm upon immunostaining of neutrophils. Subcellular fractionation was used to separate the azurophil and specific granules from a light-membrane fraction containing plasma membranes and secretory vesicles, and Western blotting was used to determine the presence of the Lamps in these fractions. The results show that Lamp-1 and Lamp-2 are present in the specific-granule-enriched fraction and in the light-membrane fraction, but not in the azurophil granules. Separation of secretory vesicles from plasma membranes disclosed that the light-membrane Lamps were present primarily in the secretory-vesicle-enriched fraction. During phagocytosis both Lamp-1 and Lamp-2 became markedly concentrated around the ingested particle and they both appear on the cell surface when the secretory organelles are mobilized.


1996 ◽  
Vol 316 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Michaela KAUFMAN ◽  
Thomas LETO ◽  
Rachel LEVY

Annexin I in the cytosol of resting neutrophils was translocated to the plasma membranes upon addition of opsonized zymosan (OZ). Maximum translocation could be detected 1 min after stimulation with OZ, and decreased thereafter. Subcellular fractionation studies demonstrated that annexin I could not be detected in the granule fractions in either resting or activated cells, but was found in association with the phagosome fraction. The marked translocation of annexin I was unique to OZ, since formyl-Met-Leu-Phe induced only slight translocation of annexin I to the plasma membranes, and phorbol 12-myristate 13-acetate had no effect at all. The mechanism regulating the translocation of annexin I is not clear. Annexin I is not phosphorylated in resting or stimulated cells. The correlation between the elevation in the intracellular calcium ion concentration ([Ca2+]i) and the degree of translocation of annexin I to the plasma membranes induced by the different stimuli, together with the inhibition of these processes by the addition of EGTA, indicate that the translocation of annexin I can probably be attributed to the rise in [Ca2+]i. However, this cannot be the sole mechanism since ionomycin, which caused an increase in [Ca2+]i similar to that induced by OZ, was less efficient than OZ in inducing translocation of annexin I. The induction of annexin I translocation to the plasma membrane by OZ, which was the only agent that induced phagosome formation, and the detection of annexin I in the phagosome fraction, suggest that annexin I participates in phagosome function.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 341-349 ◽  
Author(s):  
Y Cui ◽  
KA Harvey ◽  
RA Siddiqui ◽  
J Jansen ◽  
LP Akard ◽  
...  

Abstract Phosphotyrosine phosphatases (PTPases) regulate cellular metabolic activation by reversing the effects of tyrosine kinases activated earlier in intracellular signaling pathways. We coupled fluorescence-activated cell sorter analysis using anti-CD45 monoclonal antibody with direct measurements of enzyme activity in resolved subcellular fractions to define mechanisms that potentially regulate the availability and activity of CD45-PTPase on neutrophil plasma membranes. Neutrophils in freshly obtained blood as well as neutrophils freshly isolated from blood were found to possess detectable levels of plasma membrane CD45 as assessed by immunofluorescence. However, plasma membranes from these cells were essentially devoid of PTPase catalytic activity, which was largely confined to the specific granules. Granulocyte-macrophage colony-stimulating factor (GM-CSF) upregulated both the catalytic and antigenic components of CD45-PTPase on the plasma membrane of these cells. Upregulation was associated with a shift in the particulate subcellular PTPase catalytic activity from the specific granule fraction to the plasma membrane fraction. The tyrosine kinase inhibitor genistein abrogated GM-CSF-promoted upregulation of plasma membrane CD45 PTPase but did not prevent the GM-CSF-dependent decrease in specific granule catalytic activity. Anti-CD45 antibody immunoprecipitated PTPase activity from both specific granules of resting cells and plasma membranes of GM-CSF-treated cells. However, antiphosphotyrosine immunoprecipitated only activity that had translocated to the plasma membrane, suggesting a role for CD45 phosphorylation in translocation. Western analysis confirmed the tyrosine phosphorylation of CD45 in plasma membranes of GM-CSF-treated neutrophils. Preincubation of plasma membranes of GM-CSF-stimulated neutrophils with cytosol from resting cells resulted in a time- and temperature-dependent loss in membrane PTPase as a consequence of the effects of a cytosolic inactivator. Cytosol obtained from stimulated neutrophils possessed substantially reduced levels of this PTPase inactivator. We conclude that activity of the catalytic component of membrane PTPase in circulating neutrophils is regulated by a cytosolic inactivator. Upon stimulation, intact CD45 PTPase is incorporated into the plasma membrane by a process that requires tyrosine phosphorylation. As a result of inhibition of the cytosolic inactivator, the translocated PTPase expresses full activity, thereby amplifying the potential regulatory influence of the enzyme on the cells' functional response.


Sign in / Sign up

Export Citation Format

Share Document