scholarly journals Effects of mutating Asn-52 to isoleucine on the haem-linked properties of cytochrome c

1994 ◽  
Vol 302 (1) ◽  
pp. 95-101 ◽  
Author(s):  
A Schejter ◽  
T I Koshy ◽  
T L Luntz ◽  
R Sanishvili ◽  
I Vig ◽  
...  

Asn-52 of rat cytochrome c and baker's yeast iso-1-cytochrome c was changed to isoleucine by site-directed mutagenesis and the mutated proteins expressed in and purified from cultures of transformed yeast. This mutation affected the affinity of the haem iron for the Met-80 sulphur in the ferric state and the reduction potential of the molecule. The yeast protein, in which the sulphur-iron bond is distinctly weaker than in vertebrate cytochromes c, became very similar to the latter: the pKa of the alkaline ionization rose from 8.3 to 9.4 and that of the acidic ionization decreased from 3.4 to 2.8. The rates of binding and dissociation of cyanide became markedly lower, and the affinity was lowered by half an order of magnitude. In the ferrous state the dissociation of cyanide from the variant yeast cytochrome c was three times slower than in the wild-type. The same mutation had analogous but less pronounced effects on rat cytochrome c: it did not alter the alkaline ionization pKa nor its affinity for cyanide, but it lowered its acidic ionization pKa from 2.8 to 2.2. These results indicate that the mutation of Asn-52 to isoleucine increases the stability of the cytochrome c closed-haem crevice as observed earlier for the mutation of Tyr-67 to phenylalanine [Luntz, Schejter, Garber and Margoliash (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3524-3528], because of either its effects on the hydrogen-bonding of an interior water molecule or a general increase in the hydrophobicity of the protein in the domain occupied by the mutated residues. The reduction potentials were affected in different ways; the Eo of rat cytochrome c rose by 14 mV whereas that of the yeast iso-1 cychrome c was 30 mV lower as a result of the change of Asn-52 to isoleucine.

1995 ◽  
Vol 312 (1) ◽  
pp. 273-280 ◽  
Author(s):  
M Haraguchi ◽  
S Yamashiro ◽  
K Furukawa ◽  
K Takamiya ◽  
H Shiku ◽  
...  

The amino acid sequence deduced from the cloned human cDNA of beta-1,4-N-acetylgalactosaminyltransferase (GalNAc-T; EC 2.4.1.92) gene predicted three potential sites for N-linked glycosylation. Although many glycosyltransferases isolated contain from 2 to 6 N-glycosylation sites, their significance has not been adequately demonstrated. To clarify the roles of N-glycosylation in GalNAc-T function, we generated a series of mutant cDNAs, in which some or all of the glycosylation recognition sites were eliminated by polymerase chain reaction (PCR)-mediated site-directed mutagenesis. Using transcription/translation in vitro, we confirmed that all potential N-glycosylation sites could be used. Although cell lines transfected with mutant cDNAs showed equivalent levels of GalNAc beta 1-->4(NeuAc alpha 2-->3)Gal beta 1-->4Glc-Cer (GM2) to that of the wild-type, the extracts from mutant cDNA transfectants demonstrated lower enzyme activity than in the wild-type. The decrease in enzyme activity was more evident as the number of deglycosylated sites increased, with about 90% decrease in a totally deglycosylated mutant. The enzyme kinetics analysis revealed no significant change of Km among wild-type and mutant cDNA products. The intracellular localization of GalNAc-T expressed in transfectants with wild-type or mutant cDNAs also showed a similar perinuclear pattern (Golgi pattern). These results suggest that N-linked carbohydrates on GalNAc-T are required for regulating the stability of the enzyme structure.


1999 ◽  
Vol 65 (2) ◽  
pp. 591-598 ◽  
Author(s):  
Ulrike Pag ◽  
Christoph Heidrich ◽  
Gabriele Bierbaum ◽  
Hans-Georg Sahl

ABSTRACT The lantibiotic Pep5 is produced by Staphylococcus epidermidis 5. Within its biosynthetic gene cluster, the immunity gene pepI, providing producer self-protection, is localized upstream of the structural gene pepA. Pep5 production and the immunity phenotype have been found to be tightly coupled (M. Reis, M. Eschbach-Bludau, M. I. Iglesias-Wind, T. Kupke, and H.-G. Sahl, Appl. Environ. Microbiol. 60:2876–2883, 1994). To study this phenomenon, we analyzed pepA and pepItranscription and translation and constructed a number of strains containing various fragments of the gene cluster and expressing different levels of immunity. Complementation of apepA-expressing strain with pepI intrans did not result in phenotypic immunity or production of PepI. On the other hand, neither pepA nor its product was found to be involved in immunity, since suppression of the translation of the pepA mRNA by mutation of the ATG start codon did not reduce the level of immunity. Moreover, homologous and heterologous expression of pepI from a xylose-inducible promoter resulted in significant Pep5 insensitivity. Most important for expression of the immunity phenotype was the stability ofpepI transcripts, which in the wild-type strain, is achieved by an inverted repeat with a free energy of −56.9 kJ/mol, localized downstream of pepA. We performed site-directed mutagenesis to study the functional role of PepI and constructed F13D PepI, I17R PepI, and PepI 1-65; all mutants showed reduced levels of immunity. Western blot analysis indicated that F13D PepI and PepI 1-65 were not produced correctly or were partially degraded, while I17R PepI apparently was less efficient in providing self-protection than the wild-type PepI.


1994 ◽  
Vol 299 (2) ◽  
pp. 347-350 ◽  
Author(s):  
T I Koshy ◽  
T L Luntz ◽  
B Plotkin ◽  
A Schejter ◽  
E Margoliash

The residue asparagine-52 of rat cytochrome c and baker's yeast iso-1-cytochrome c was mutated to isoleucine by site-directed mutagenesis, and the unfolding of the wild-type and mutant proteins in urea or guanidinium chloride solutions was studied. Whereas the yeast mutant cytochrome unfolded in 4-7 M urea with a rate constant (k) of 1.7 x 10(-2) s-1, the rat mutant protein unfolded with k = 5.0 x 10(-2) s-1, followed by a slow partial refolding with k = 5.0 x 10(-4) s-1. Denaturant titrations indicated that the mutation increased the stability of the yeast cytochrome by 6.3 kJ (1.5 kcal)/mol, while it decreased that of the rat protein by 11.7 kJ (2.8 kcal)/mol. These results probably reflect structural differences between yeast iso-1 and vertebrate cytochromes c in the vicinity of the Asn-52 side chain.


1994 ◽  
Vol 302 (2) ◽  
pp. 355-361 ◽  
Author(s):  
K Inukai ◽  
T Asano ◽  
H Katagiri ◽  
M Anai ◽  
M Funaki ◽  
...  

A mutated GLUT1 glucose transporter, a Trp-388, 412 mutant whose tryptophans 388 and 412 were both replaced by leucines, was constructed by site-directed mutagenesis and expressed in Chinese hamster ovary cells. Glucose transport activity was decreased to approx. 30% in the Trp-388, 412 mutant compared with that in the wild type, a similar decrease in transport activity had been observed previously in the Trp-388 mutant and the Trp-412 mutant which had leucine at 388 and 412 respectively. Cytochalasin B labelling of the Trp-388 mutant was only decreased rather than abolished, a result similar to that obtained previously for the Trp-412 mutant. Cytochalasin B labelling was finally abolished completely in the Trp-388, 412 mutant, while cytochalasin B binding to this mutant was decreased to approx. 30% of that of the wild-type GLUT1 at the concentration used for photolabelling. This level of binding is thought to be adequate to detect labelling, assuming that the labelling efficiency of these transporters is similar. These findings suggest that cytochalasin B binds to the transmembrane domain of the glucose transporter in the vicinity of helix 10-11, and is inserted covalently by photoactivation at either the 388 or the 412 site.


1997 ◽  
Vol 326 (3) ◽  
pp. 861-866 ◽  
Author(s):  
Timothy P. O'CONNELL ◽  
Regina M. DAY ◽  
Ekaterina V. TORCHILIN ◽  
William W. BACHOVCHIN ◽  
J. Paul G. MALTHOUSE

By removing one of the hydrogen-bond donors in the oxyanion hole of subtilisin BPN, we have been able to determine how it affects the catalytic efficiency of the enzyme and the pKa of the oxyanion formed in a choloromethane inhibitor derivative. Variant 8397 of subtilisin BPN contains five mutations which enhance its stability. Site-directed mutagenesis was used to prepare the N155A mutant of this variant. The catalytic efficiencies of wild-type and variant 8397 are similar, but replacing Asn-155 with alanine reduces catalytic efficiency approx. 300-fold. All three forms of subtilisin were alkylated using benzyloxycarbonylglycylglycyl[2-13C]phenylalanylchloromethane and examined by 13C-NMR. A single signal due to the 13C-enriched carbon was detected in all the derivatives and it was assigned to the hemiketal carbon of a tetrahedral adduct formed between the hydroxy group of Ser-221 and the inhibitor. This signal had chemical shifts in the range 98.3–103.6 p.p.m., depending on the pH. The titration shift of 4.7–4.8 p.p.m. was assigned to oxyanion formation. The oxyanion pKa values in the wild-type and 8397 variants were 6.92 and 7.00 respectively. In the N155A mutant of the 8397 variant the oxyanion pKa increased to 8.09. We explain why such a small increase is observed and we conclude that it is the interaction between the oxyanion and the imidazolium cation of the active-site histidine that is the main factor responsible for lowering the oxyanion pKa.


2007 ◽  
Vol 189 (7) ◽  
pp. 2873-2885 ◽  
Author(s):  
Yuqing Tian ◽  
Kay Fowler ◽  
Kim Findlay ◽  
Huarong Tan ◽  
Keith F. Chater

ABSTRACT WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal “phosphorylation pocket” were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whiI. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which WhiI acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.


2007 ◽  
Vol 405 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Tanja Schlecker ◽  
Marcelo A. Comini ◽  
Johannes Melchers ◽  
Thomas Ruppert ◽  
R. Luise Krauth-Siegel

Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes. Site-directed mutagenesis revealed that Cys47 and Gln82 are essential. A glycine mutant of Trp137 had 13% of wild-type activity, which suggests that the aromatic residue may play a structural role but is not directly involved in catalysis. Cys95, which is conserved in related yeast and plant proteins but not in the mammalian selenoenzymes, proved to be essential as well. In contrast, replacement of the highly conserved Cys76 by a serine residue resulted in a fully active enzyme species and its role remains unknown. Thr50, proposed to stabilize the thiolate anion at Cys47, is also not essential for catalysis. Treatment of the C76S/C95S but not of the C47S/C76S double mutant with H2O2 induced formation of a sulfinic acid and covalent homodimers in accordance with Cys47 being the peroxidative active site thiol. In the wild-type peroxidase, these oxidations are prevented by formation of an intramolecular disulfide bridge between Cys47 and Cys95. As shown by MS, regeneration of the reduced enzyme by Tpx involves a transient mixed disulfide between Cys95 of the peroxidase and Cys40 of Tpx. The catalytic mechanism of the Tpx peroxidase resembles that of atypical 2-Cys-peroxiredoxins but is distinct from that of the selenoenzymes.


2003 ◽  
Vol 375 (3) ◽  
pp. 721-728 ◽  
Author(s):  
James W. A. ALLEN ◽  
Stuart J. FERGUSON

Cytochromes c are typically characterized by the covalent attachment of haem to polypeptide through two thioether bonds with the cysteine residues of a Cys-Xaa-Xaa-Cys-His peptide motif. In many Gram-negative bacteria, the haem is attached to the polypeptide by the periplasmically functioning cytochrome c maturation (Ccm) proteins. Exceptionally, Hydrogenobacter thermophilus cytochrome c552 can be expressed as a stable holocytochrome both in the cytoplasm of Escherichia coli in an apparently uncatalysed reaction and also in the periplasm in a Ccm-mediated reaction. In the present study we show that a Met60→Ala variant of c552, which does not have the usual distal methionine ligand to the haem iron of the mature cytochrome, can be made in the periplasm by the Ccm system. However, no holocytochrome could be detected when this variant was expressed cytoplasmically. These data highlight differences between the two modes of cytochrome c assembly. In addition, we report investigations of haem attachment to cytochromes altered to have the special Cys-Trp-Ser-Cys-Lys haem-binding motif, and Cys-Trp-Ser-Cys-His and Cys-Trp-Ala-Cys-His analogues, of the active-site haem of nitrite reductase NrfA.


2016 ◽  
Vol 60 (5) ◽  
pp. 3123-3126 ◽  
Author(s):  
Carlo Bottoni ◽  
Mariagrazia Perilli ◽  
Francesca Marcoccia ◽  
Alessandra Piccirilli ◽  
Cristina Pellegrini ◽  
...  

ABSTRACTSite-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-β-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


1976 ◽  
Vol 155 (3) ◽  
pp. 589-597 ◽  
Author(s):  
A J Do Nascimento

Static measurements of the reaction of ligand binding were done by conventional spectrophotometry. The ligand-binding reactions with nitrated cytochrome c were performed with imidazole, iminazole, CO and NO. The stoicheiometry was found to be 1:1, and the stability constants for the complexes formed between the nitrated cytochrome c and the ligands are: 2.58 × 10(4) M-1 (imidazole); 1.01 × 10(2) M-1 (iminazole); 3.6 × 10(4) M-1 (CO); 2.74 × 10(4) M-1 (NO). It was found that the electrometric potentials at pH 7.0 and 25degreesC of [aminotyrosyl]cytochrome c are E'o form II = 0.115 V and E'o form I = 0.260 V, where forms I and II are two species of protein co-existing in the protein solution. The isoelectric point for the oxidized form of [nitrotyrosyl]cytochrome c was 10.05, at 4degreesC.


Sign in / Sign up

Export Citation Format

Share Document