scholarly journals Evidence of a defined spatial arrangement of hyaluronate in the central filament of cartilage proteoglycan aggregates

1995 ◽  
Vol 307 (2) ◽  
pp. 595-601 ◽  
Author(s):  
M Mörgelin ◽  
M Paulsson ◽  
D Heinegård ◽  
U Aebi ◽  
J Engel

Aggregates of proteoglycans from the Swarm rat chondrosarcoma reassembled in vitro have been studied by rotary-shadowing electron microscopy, and shown to be similar to native structures that have never been dissociated [Mörgelin, Engel, Heinegård and Paulsson (1992) J. Biol. Chem. 267, 14275-14284]. A hyaluronate with defined chain length (HAshort) has now been prepared by autoclaving high-Mr hyaluronate and fractionation to a narrow size distribution by gel filtration. Proteoglycan monomers, core protein, hyaluronate-binding region and link protein were combined with HAshort. Free chains of HAshort and reconstituted complexes with proteoglycan, link protein and aggrecan fragments were examined by electron microscopy after rotary shadowing. Length measurements showed that the hyaluronate was condensed to about half of its original length on binding intact aggrecan monomers, any aggrecan fragment or link protein alone. This strongly implies that hyaluronate adopts a defined spatial arrangement within the central filament of the aggregate, probably different from its secondary structure in solution. No differences in length were observed between link-free and link-stabilized aggregates.

1978 ◽  
Vol 175 (3) ◽  
pp. 913-919 ◽  
Author(s):  
Dick Heinegård ◽  
Stefan Lohmander ◽  
Johan Thyberg

1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.


1988 ◽  
Vol 253 (1) ◽  
pp. 175-185 ◽  
Author(s):  
M Mörgelin ◽  
M Paulsson ◽  
T E Hardingham ◽  
D Heinegård ◽  
J Engel

Aggregates formed by the interaction of cartilage proteoglycan monomers and fragments thereof with hyaluronate were studied by electron microscopy by use of rotary shadowing [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333]. The differences in shape and packing of the proteins bound along the hyaluronate strand in aggregates formed in the presence and in the absence of link protein were examined in detail. The high resolution of the method allowed examination of the involvement in hyaluronate binding of the globular core-protein domains G1, G2 and G3 [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333; Paulsson, Mörgelin, Wiedemann, Beardmore-Gray, Dunham, Hardingham, Heinegård, Timpl & Engel (1987) Biochem. J. 245, 763-772]. Fragments comprising the globular hyaluronate-binding region G1 form complexes with hyaluronate with an appearance of necklace-like structures, statistically interspaced by free hyaluronate strands. The closest centre-to-centre distance found between adjacent G1 domains was 12 nm. Another fragment comprising the binding region G1 and the adjacent second globular domain G2 attaches to hyaluronate only by one globule. Also, the core protein obtained by chondroitinase digestion of proteoglycan monomer binds only by domain G1, with domain G3 furthest removed from the hyaluronate. Globule G1 shows a statistical distribution along the hyaluronate strands. In contrast, when link protein is added, binding is no longer random, but instead uninterrupted densely packed aggregates are formed.


1991 ◽  
Vol 279 (3) ◽  
pp. 733-739 ◽  
Author(s):  
C Hughes ◽  
G Murphy ◽  
T E Hardingham

The action of purified rabbit bone stromelysin was investigated on proteoglycan aggregates from pig laryngeal cartilage. The enzyme caused a rapid fall in viscosity of proteoglycan aggregate solution (6 mg/ml), and the products of a partial digest (60% loss of relative viscosity) and a complete digest (95% loss of relative viscosity) were characterized. Analysis by gel chromatography on Sepharose 2B under associative conditions showed that 95% of the glycosaminoglycans in the complete digest were in small-sized fragments, whereas most of the hyaluronan-binding G1 domain and link protein remained intact and bound to hyaluronan. In contrast, there was extensive digestion of the G2 domain which resulted in 76% loss in its detection by immunoassay. Analysis of the partial digest also showed considerable loss (40%) of detection of the G2 domain, but the glycosaminoglycan-rich fragments were much larger than in the complete digest. There was also much less cleavage to create small fragments containing the G1 domain. This was evident on SDS/PAGE analysis where a 58 kDa G1 domain fragment was abundant in the complete digest, but was only present in small amounts in the partial digest. There was also only very limited conversion of link protein from a 44 kDa form to a 40 kDa form. The digestion of proteoglycan aggregate (6 mg/ml) by stromelysin was unaffected by the addition of a high concentration of extra chondroitin sulphate chains (14 mg/ml), and the digestion of proteoglycan monomer showed that the G1 domain was resistant to stromelysin digestion even when not bound to hyaluronan and link protein. The results show that stromelysin degrades the proteoglycan protein core with major cleavages close to, but not within, the G1 domain, and extensive cleavage in other regions. Experiments with purified collagenase, a metalloproteinase structurally related to stromelysin, showed that it too cleaved proteoglycan at several sites within the glycosaminoglycan-rich region of the core protein. Metalloproteinase attack on proteoglycan thus not only occurs with stromelysin but also with collagenase.


1983 ◽  
Vol 214 (3) ◽  
pp. 855-864 ◽  
Author(s):  
A H K Plaas ◽  
J D Sandy ◽  
H Muir

The synthesis of link-stabilized proteoglycan aggregates by rabbit articular chondrocytes was investigated by [35S]sulphate labelling of primary monolayer cultures maintained for up to 21 days. (1) At all culture times the cells secreted a high-molecular-weight cartilage-type proteoglycan monomer of which 75%-80% formed aggregates with hyaluronic acid. (2) At 2 days of culture all of the aggregates were in link-stabilized form, but by 21 days only 5% were link-stabilized, as shown by displacement of monomers from the aggregate by hyaluronic acid oligosaccharides. (3) The addition of purified link protein to 21-day culture medium increased the proportion of link-stable aggregate from 5% to 70%. (4) Analysis of [3H]serine-labelled proteoglycan aggregates in the medium showed a marked decrease with culture time in the ratio of 3H-labelled link protein to 3H-labelled core protein present. The results suggest that the secretion of proteoglycan monomers and link protein by articular chondrocytes changes independently during prolonged monolayer culture.


1996 ◽  
Vol 132 (4) ◽  
pp. 643-655 ◽  
Author(s):  
G Goulielmos ◽  
F Gounari ◽  
S Remington ◽  
S Müller ◽  
M Häner ◽  
...  

The fiber cells of the eye lens possess a unique cytoskeletal system known as the "beaded-chain filaments" (BFs). BFs consist of filensin and phakinin, two recently characterized intermediate filament (IF) proteins. To examine the organization and the assembly of these heteropolymeric IFs, we have performed a series of in vitro polymerization studies and transfection experiments. Filaments assembled from purified filensin and phakinin exhibit the characteristic 19-21-nm periodicity seen in many types of IFs upon low angle rotary shadowing. However, quantitative mass-per-length (MPL) measurements indicate that filensin/phakinin filaments comprise two distinct and dissociable components: a core filament and a peripheral filament moiety. Consistent with a nonuniform organization, visualization of unfixed and unstained specimens by scanning transmission electron microscopy (STEM) reveals the the existence of a central filament which is decorated by regularly spaced 12-15-nm-diam beads. Our data suggest that the filamentous core is composed of phakinin, which exhibits a tendency to self-assemble into filament bundles, whereas the beads contain filensin/phakinin hetero-oligomers. Filensin and phakinin copolymerize and form filamentous structures when expressed transiently in cultured cells. Experiments in IF-free SW13 cells reveal that coassembly of the lens-specific proteins in vivo does not require a preexisting IF system. In epithelial MCF-7 cells de novo forming filaments appear to grow from distinct foci and organize as thick, fibrous laminae which line the plasma membrane and the nuclear envelope. However, filament assembly in CHO and SV40-transformed lens-epithelial cells (both of which are fibroblast-like) yields radial networks which codistribute with the endogenous vimentin IFs. These observations document that the filaments formed by lens-specific IF proteins are structurally distinct from ordinary cytoplasmic IFs. Furthermore, the results suggest that the spatial arrangement of filensin/phakinin filaments in vivo is subject to regulation by host-specific factors. These factors may involve cytoskeletal networks (e.g., vimentin IFs) and/or specific sites associated with the cellular membranes.


2003 ◽  
Vol 375 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Peter J. ROUGHLEY ◽  
James BARNETT ◽  
Fengrong ZUO ◽  
John S. MORT

Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates. Both aggrecanases showed a similar ability to cleave within the CS2 domain of bovine aggrecan irrespective of age, but showed a much lower ability to cleave within the CS2 domain of human aggrecan. Equivalent results were obtained whether aggrecan was present in isolation or as part of proteoglycan aggregates. When proteoglycan aggregates were used, neither aggrecanase was able to cleave link protein. Thus, for aggrecan cleavage by aggrecanases, variations in cleavage efficiency exist with respect to the species and age of the animal from which the aggrecan is derived and the type of aggrecanase being used.


1984 ◽  
Vol 224 (1) ◽  
pp. 331-333 ◽  
Author(s):  
H Wiedemann ◽  
M Paulsson ◽  
R Timpl ◽  
J Engel ◽  
D Heinegård

The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.


1987 ◽  
Vol 242 (3) ◽  
pp. 761-766 ◽  
Author(s):  
N P Ward ◽  
J E Scott ◽  
L Cöster

Two dermatan sulphate-containing proteoglycans from bovine sclera were examined by rotary shadowing and electron microscopy, and the results were compared with previous biochemical findings. Both the large iduronate-poor proteoglycan (PGI) and the small iduronate-rich proteoglycan (PGII) possessed a globular proteinaceous region. Whereas PGI had a branched extension from the globular region, with five to eight side chains attached to it, PGII had only a single tail, which was of glycosaminoglycuronan. PGII aggregated via globular-region interactions, which were much diminished by reduction and alkylation. PGI aggregated via side chains and globular-region interactions. Although a few PGI aggregates were large, and similar to the hyaluronan-cartilage proteoglycan aggregates [Weidemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333], hyaluronan did not cause enhanced aggregation. PGII is very similar in shape to the small cartilage chondroitin sulphate proteoglycan, whereas PGI somewhat resembles the large cartilage chondroitin sulphate proteoglycan, although with many fewer glycosaminoglycan side chains, and probably only one globular region as opposed to two in the cartilage proteoglycan.


1981 ◽  
Vol 199 (1) ◽  
pp. 17-29 ◽  
Author(s):  
S Björnsson ◽  
D Heinegård

The assembly of proteoglycan aggregates in chondrocyte cell cultures was examined in pulse-chase experiments with the use of [35S]sulphate for labelling. Rate-zonal centrifugation in linear sucrose density gradients (10-50%, w/v) was used to separate the aggregated proteoglycans from monomers and to assess the size of the newly formed aggregates. The proportion of aggregates stabilized by link protein was assessed by competition with added exogenous aggregate components. The capacity of the proteoglycans synthesized in culture to compete with exogenous nasal-cartilage proteoglycans for binding was studied in dissociation-reassociation experiments. The results were as follows. (a) The proteoglycan monomers and the hyaluronic acid are exported separately and combined extracellularly. (b) The size of the aggregates increases gradually with time as the proportion of monomers bound to hyaluronic acid increases. (c) All of the aggregates present at a particular time appear to be link-stabilized and therefore not dissociated by added excess of nasal-cartilage proteoglycan monomer or hyaluronic acid oligomers. (d) The free monomer is apparently present as a complex with link protein. The monomer-link complexes are then aggregated to the hyaluronic acid. (e) The aggregates synthesized in vitro and the nasal-cartilage aggregates differ when tested for link-stabilization by incubation at low pH. The aggregates synthesized in vitro were completely dissociated whereas the cartilage proteoglycans remained aggregated. The results obtained from dissociation-reassociation experiments performed at low pH indicate that the proteoglycan monomer synthesized in vitro does not bind the hyaluronic acid or the link protein as strongly as does the nasal-cartilage monomer.


1987 ◽  
Vol 243 (2) ◽  
pp. 507-517 ◽  
Author(s):  
T C Farries ◽  
J T Finch ◽  
P J Lachmann ◽  
R A Harrison

A rapid and reproducible procedure for the resolution of ‘native’ and ‘activated’ forms of properdin (a component of the alternative activation pathway of complement), by gel filtration on the polyvinyl matrix Fractogel TSK HW-55(S), is reported. This fractionation permitted effective screening of samples for conditions that cause activation. Only ‘native’ properdin was detected in serum, even after activation of the alternative pathway by yeast cell walls. Transformation of ‘native’ into ‘activated’ properdin in vitro was produced by freeze-thawing of the protein, but not upon binding to and dissociation from the C3 convertase, C3bBb. Electron microscopy showed that only the ‘native’ population contained the discrete cyclic structures described previously by Smith, Pangburn, Vogel & Müller-Eberhard [(1984) J. Biol. Chem. 259, 4582-4588]. ‘Activated’ properdin, which was eluted from the gel-filtration column close to the breakthrough peak, was mainly composed of large amorphous aggregates. We therefore conclude that properdin ‘activation’ is not a physiological event that occurs in serum on complement activation, but is an artifact of isolation. Fractionation of properdin on Fractogel TSK HW-55(S) has, however, enabled detailed analysis of functional heterogeneity within the ‘native’ population.


Sign in / Sign up

Export Citation Format

Share Document