scholarly journals Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules

1984 ◽  
Vol 224 (1) ◽  
pp. 331-333 ◽  
Author(s):  
H Wiedemann ◽  
M Paulsson ◽  
R Timpl ◽  
J Engel ◽  
D Heinegård

The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.

1987 ◽  
Vol 248 (3) ◽  
pp. 735-740 ◽  
Author(s):  
C Webber ◽  
T T Glant ◽  
P J Roughley ◽  
A R Poole

After chromatography on Sepharose CL-2B under associative conditions, high-buoyant-density human articular-cartilage proteoglycans were analysed biochemically and by radioimmunoassay with monoclonal antibodies to a core-protein-related epitope and to keratan sulphate. An examination of proteoglycans from individuals of different ages revealed the presence at 1 year of mainly a single polydisperse population containing chondroitin sulphate (uronic acid) and keratan sulphate. From 4 years onwards a smaller keratan sulphate-rich and chondroitin sulphate-deficient population appears in increasing amounts until 15 years. At the same time the larger population shows a progressive decrease in size from 1 year onward. By 23 years and after the proportion of keratan sulphate in the larger chondroitin sulphate-rich proteoglycan increases. Both adult proteoglycan populations are shown immunologically to aggregate with hyaluronic acid, with the smaller showing a greater degree of interaction. The larger population is richer in serine and glycine, and the smaller population contains more glutamic acid/glutamine, alanine, phenylalanine, lysine and arginine; its protein content is also higher. Whether the larger post-natal population represents a different gene product from the single polydisperse population found in the human fetus, which has a different amino acid composition, remains to be established. The smaller population, which represents approximately one-third the mass of the larger population in the adult, may represent a degradation product of the larger population, in which the hyaluronic acid-binding region and keratan sulphate-rich region are conserved.


1981 ◽  
Vol 197 (1) ◽  
pp. 77-83 ◽  
Author(s):  
P J Roughley ◽  
D McNicol ◽  
V Santer ◽  
J Buckwalter

Proteoglycans were extracted from the adult human meniscus under dissociative conditions and purified by CsCl-density-gradient centrifugation. The preparations of highest density contained proteoglycan that possessed the ability to interact with hyaluronic acid, was of large subunit size and was composed of chondroitin sulphate, keratan sulphate and sialic acid-containing oligosaccharides. This ‘cartilage-like’ proteoglycan also exhibited subunit and aggregate structures analogous to those of hyaline-cartilage proteoglycans when examined by electron microscopy. However, the composition of this proteoglycan was more comparable with proteoglycans from immature cartilage than from age-matched cartilage. The preparations from lower density, which were enriched in dermatan sulphate, contained smaller proteoglycan that was not able to interact with hyaluronic acid. This non-aggregating proteoglycan may be structurally distinct from the ‘cartilage-like’ proteoglycan, which does not contain dermatan sulphate.


1978 ◽  
Vol 175 (3) ◽  
pp. 913-919 ◽  
Author(s):  
Dick Heinegård ◽  
Stefan Lohmander ◽  
Johan Thyberg

1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.


1981 ◽  
Vol 195 (3) ◽  
pp. 535-543 ◽  
Author(s):  
A Franzén ◽  
S Inerot ◽  
S O Hejderup ◽  
D Heinegård

Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.


1979 ◽  
Vol 179 (3) ◽  
pp. 561-572 ◽  
Author(s):  
R L Stevens ◽  
R J Ewins ◽  
P A Revell ◽  
H Muir

The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.


1996 ◽  
Vol 09 (02) ◽  
pp. 60-5 ◽  
Author(s):  
N. Hope ◽  
P. Ghosh ◽  
S. Collier

SummaryThe aim of this study was to determine the effects of intra-articular hyaluronic acid on meniscal healing. Circular defects, 1.0 mm in diameter, were made in the anterior third of the medial meniscus in rabbits. In one joint, 0.4 ml hyaluronic acid (Healon®) was instilled, and in the contralateral (control) joint, 0.4 ml Ringer’s saline. Four rabbits were killed after four, eight and 12 weeks and the menisci examined histologically. By eight weeks most of the lesions had healed by filling with hyaline-like cartilage. Healing was not improved by hyaluronic acid treatment. The repair tissue stained strongly with alcian blue, and the presence of type II collagen, keratan sulphate, and chondroitin sulphate was demonstrated by immunohistochemical localisation. In contrast to the circular defects, longitudinal incisions made in the medial menisci of a further six rabbits did not show any healing after 12 weeks, indicating that the shape of the lesion largely determined the potential for healing.The effect of hyaluronic acid on meniscal healing was tested in a rabbit model. With one millimeter circular lesions in the medial meniscus, healing by filling with hyalinelike cartilage was not significantly affected by the application of hyaluronic acid intra-articularly at the time of surgery, compared to saline controls, as assessed histologically four, eight and 12 weeks after the operation.


1980 ◽  
Vol 187 (3) ◽  
pp. 687-694 ◽  
Author(s):  
J Wieslander ◽  
D Heinegárd

Antibodies specifically reacting with the link proteins, the hyaluronic acid-binding region and chondroitin sulphate-peptides were used to design specific radioimmunoassay procedures. The sensitivity of the method used for the link protein was about 20 ng/ml, and the other two components could be determined at concentrations of about 2 ng/ml. The radioimmunoassay procedures were tested by using proteoglycan subfractions or fragments thereof. The procedures used to quantify link protein and hyaluronic acid-binding region showed no cross-interference. Fragments of trypsin-digested proteoglycan monomers still reacted in the radioimmunoassay for hyaluronic acid-binding region. Subfractions of proteoglycan monomers separated according to size had a gradually higher relative content of the hyaluronic acid-binding region compared with both chondroitin sulphate-peptides and uronic acid, when the molecules were smaller. The proteoglycans therefore may contain a variably large chondroitin sulphate-rich region, which has a constant substitution with polysaccharide side chains.


1978 ◽  
Vol 176 (3) ◽  
pp. 683-693 ◽  
Author(s):  
M T Bayliss ◽  
S Y Ali

1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 61-74
Author(s):  
Nagaswamisri Vasan

Limb-bud proteoglycans are heterogeneous molecules which vary in their chemical and physical properties with development. This report describes proteoglycan intermediates (PG-I) that predominate in stage-34 limbs, and compares them with proteoglycan aggregates (PG-A) in stage-38 limbs. We analysed proteoglycans and their components extracted with guanidinium chloride by subjecting them to density gradient centrifugation, molecular sieve chromatography, electrophoretic separation, and selective enzymatic degradation. PG-I and PG-A have similar chondroitin sulphate composition, amino sugars, chondroitin sulphate side-chain length, glycoprotein link factors, and hyaluronic acid binding capacity, and both cross react with antisera prepared against cartilage-specific chick sternal proteoglycans. However, PG-I has lower molecular weight, lower buoyant density, and fewer chondroitin sulphate side chains on the protein core. The PG-I in the developing limb can be considered a mixture of smaller aggregates and cartilage-specific large monomers in which the former predominate.


1974 ◽  
Vol 139 (3) ◽  
pp. 565-581 ◽  
Author(s):  
Timothy E. Hardingham ◽  
Helen Muir

1. Dissociation of purified proteoglycan aggregates was shown to release an interacting component of buoyant density higher than that of the glycoprotein-link fraction of Hascall & Sajdera (1969). 2. This component, which produced an increase in hydrodynamic size of proteoglycans on gel chromatography, was isolated by ECTEOLA-cellulose ion-exchange chromatography and identified as hyaluronic acid. 3. The effect of pH of extraction showed that the proportion of proteoglycan aggregates isolated from cartilage was greatest at pH4.5. 4. The proportion of proteoglycans able to interact with hyaluronic acid decreased when extracted above or below pH4.5, whereas the amount of hyaluronic acid extracted appeared constant from pH3.0 to 8.5. 5. Sequential extraction of cartilage with 0.15m-NaCl at neutral pH followed by 4m-guanidinium chloride at pH4.5 was shown to yield predominantly non-aggregated and aggregated proteoglycans respectively. 6. Most of the hyaluronic acid in cartilage, representing about 0.7% of the total uronic acid, was associated with proteoglycan aggregates. 7. The non-aggregated proteoglycans were unable to interact with hyaluronic acid and were of smaller size, lower protein content and lower keratan sulphate content than the disaggregated proteoglycans. Together with differences in amino acid composition this suggested that each type of proteoglycan contained different protein cores.


Sign in / Sign up

Export Citation Format

Share Document