scholarly journals Role of cyclic nucleotides in store-mediated external Ca2+ entry in human platelets

1995 ◽  
Vol 310 (1) ◽  
pp. 263-269 ◽  
Author(s):  
K Nakamura ◽  
M Kimura ◽  
A Aviv

This study explores the role of cyclic nucleotides (i.e. cyclic AMP and cyclic GMP) in store-regulated external Ca2+ entry in human platelets. To stimulate store-regulated external Ca2+ entry, thapsigargin was used to deplete Ca2+ from the dense tubules, and sodium nitroprusside and iloprost respectively were used to stimulate endogenous cyclic GMP and cyclic AMP formation. Pretreatment with sodium nitroprusside and iloprost (a) attenuated the thapsigargin-evoked external Ca2+ entry and (b) reduced the rate of Ca2+ release from the dense tubules. The effects on external Ca2+ entry and Ca2+ release from the dense tubules were exerted independently and were apparently mediated through activation of the respective cyclic nucleotide-dependent protein kinases. Both sodium nitroprusside and iloprost reduced tyrosine kinase phosphorylation of a number of proteins, particularly a 72 kDa protein band. Both agents also attenuated the thapsigargin-evoked tyrosine kinase phosphorylation of the 72 kDa band. Intracellular Ca2+ depletion resulted in a reduction in tyrosine kinase-mediated phosphorylation of a number of protein bands, including the 72 kDa band and the further attenuation of thapsigargin-mediated tyrosine phosphorylation of this band. The effects of the cyclic nucleotides on cellular Ca2+ homoeostasis in thapsigargin-treated platelets were not exerted via acceleration of Ca2+ extrusion or Ca2+ sequestration into the mitochondria. We conclude that cyclic nucleotides participate in store-regulated control of external Ca2+ entry by slowing down the rate of external Ca2+ entry and Ca2+ release from intracellular Ca2+ stores. These effects are apparently mediated via cyclic nucleotide-dependent protein kinases and the attenuation of protein phosphorylation by tyrosine kinases.

1980 ◽  
Vol 87 (2) ◽  
pp. 336-345 ◽  
Author(s):  
C L Browne ◽  
A H Lockwood ◽  
J L Su ◽  
J A Beavo ◽  
A L Steiner

Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide-dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.


Author(s):  
John W. Phillis

SUMMARY:On the basis of the information presented in this review, it is difficult to reach any firm decision regarding the role of cyclic AMP (or cyclic GMP) in synaptic transmission in the brain. While it is clear that cyclic nucleotide levels can be altered by the exposure of neural tissues to various neurotransmitters, it would be premature to claim that these nucleotides are, or are not, essential to the transmission process in the pre- or postsynaptic components of the synapse. In future experiments with cyclic AMP it will be necessary to consider more critically whether the extracellularly applied nucleotide merely provides a source of adenosine and is thus activating an extracellularly located adenosine receptor, or whether it is actually reaching the hypothetical sites at which it might act as a second messenger. The application of cyclic AMP by intracellular injection techniques should minimize this particular problem, although possibly at the expense of new difficulties. Prior blockade of the adenosine receptor with agents such as theophylline or adenine xylofuranoside may also assist in the categorization of responses to extracellularly applied cyclic AMP as being a result either of activation of the adenosine receptor or of some other mechanism. Ultimately, the development of highly specific inhibitors for adenylate cyclase should provide a firm basis from which to draw conclusions about the role of cyclic AMP in synaptic transmission. Similar considerations apply to the actions of cyclic GMP and the role of its synthesizing enzyme, guanylale cyclase.The use of phosphodiesterase inhibitors in studies on cyclic nucleotides must also be approached with caution. The diverse actions of many of these compounds, which include calcium mobilization and block of adenosine uptake, could account for many of the results that have been reported in the literature.


1979 ◽  
Author(s):  
R.J. Haslam ◽  
J.E.B. Fox ◽  
S.E. Salama ◽  
J.A. Lynham

The relationships between the phosphorylation of specific platelet polypeptides and platelet function were studied using washed human platelets labelled by preincubation with [32p] Pi. Platelet polypeptides were separated by SDS-PAGE and 32P incorporation into them determined by autoradiography. Whereas induction of platelet aggregation alone did not affect protein phosphorylation, induction of the release reaction increased 3P incorporation into several polypeptides (P75,P47,P40,P27,P20,P19), including the P-light chain of platelet myosin (P20). These changes were inhibited by drugs that blocked Ca2 movements and may be due to activation of Ca2+-dependent protein kinases. Compounds that inhibited platelet function by increasing cyclic AMP (e.g. PCE1) also suppressed these reactions but, in addition, increased phosphorylation of other polypeptides (P50,P49,P36,P24,P22). Type I and Type II cyclic AMP-dependent protein kinases were present in platelets and may mediate Che latter effects of cyclic AMP. Subcellular fractionation of 32p-labelled platelets that had been exposed to PCE1 showed that P24 was present in membranes that could take up Ca2+ by an ATP-dependent mechanism. Membranes from PCE1-treated platelets took up Ca2+ more rapidly than control membranes. Thus, the cyclic AMP-dependent phosphorylation of P24 may stimulate the removal of Ca2+ from platelet cytosol and suppress Ca2+-dependent phosphorylation reactions necessary for release of granule constituents.


2004 ◽  
Vol 171 (4S) ◽  
pp. 380-381
Author(s):  
Eginhard S. Waldkirch ◽  
Petter Hedlund ◽  
Stefan Ueckert ◽  
Christian G. Stief ◽  
Udo Jonas ◽  
...  

1983 ◽  
Vol 213 (1) ◽  
pp. 159-164 ◽  
Author(s):  
D B Glass

The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.


Sign in / Sign up

Export Citation Format

Share Document