scholarly journals Insulin and vasopressin elicit inhibition of cholera-toxin-stimulated adenylate cyclase activity in both hepatocytes and the P9 immortalized hepatocyte cell line through an action involving protein kinase C

1995 ◽  
Vol 312 (3) ◽  
pp. 769-774 ◽  
Author(s):  
L Zeng ◽  
M D Houslay

Incubation of hepatocytes or the SV40-DNA-immortalized hepatocyte P9 cell line with cholera toxin led to a time-dependent activation of adenylate cyclase activity, which occurred after a defined lag period. When added together with cholera toxin, each of the hormones insulin and vasopressin was capable of attenuating the maximum stimulatory effect achieved by cholera toxin over a period of 60 min through a process which could be blocked by the compounds staurosporine and chelerythrine. Attenuating effects on cholera-toxin-stimulated adenylate cyclase activity could also be elicited by using either the protein kinase C (PKC)-stimulating phorbol ester PMA (phorbol 12-myristate 13-acetate) or the protein phosphatase inhibitor okadaic acid. Alkaline phosphatase treatment of membranes reversed the inhibitory effect of PMA. Cholera toxin also stimulated the adenylate cyclase activity of intact CHO (Chinese-hamster ovary) and NIH-3T3 cells, but this activity was insensitive to the addition of PMA. Overexpression of various PKC isoforms in CHO cell lines did not confer sensitivity to inhibition by PMA upon cholera-toxin-stimulated adenylate cyclase activity. Rather, overexpression of the gamma isoform of PKC allowed PMA to stimulate adenylate cyclase activity in CHO cells. It is suggested that the PKC-mediated phosphorylation of a membrane protein attenuates cholera-toxin-stimulated adenylate cyclase activity in hepatocytes and P9 cells. The cellular selectivity of such an action may be due to the target for this inhibitory action of PKC being a particular isoform of adenylate cyclase which provides the major activity in hepatocytes and P9 cells, but not in either CHO or NIH-3T3 cells.

1992 ◽  
Vol 262 (1) ◽  
pp. E87-E95
Author(s):  
A. M. Freyaldenhoven ◽  
G. E. Gutierrez ◽  
M. D. Lifschitz ◽  
M. S. Katz

The effects of phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, on receptor-mediated stimulation of adenylate cyclase were evaluated in a rat osteosarcoma cell line (UMR-106) with the osteoblast phenotype. Pretreatment of UMR-106 cells with PMA increased parathyroid hormone (PTH)-stimulated adenylate cyclase activity and inhibited prostaglandin E2 (PGE2)-responsive enzyme activity. In addition, PMA enhanced enzyme activation by forskolin, which is thought to exert a direct stimulatory action on the catalytic subunit of adenylate cyclase. The regulatory effects of PMA were concentration dependent and of rapid onset (less than or equal to 1 min). Treatment with PMA also resulted in translocation of protein kinase C activity from the cytosol to the particulate cell fraction. Pertussis toxin, which attenuates inhibition of adenylate cyclase mediated by the inhibitory guanine nucleotide-binding regulatory protein (Gi), augmented PTH-sensitive adenylate cyclase activity and reduced the incremental increase in PTH response produced by PMA. The results suggest that activation of protein kinase C increases PTH-stimulated adenylate cyclase activity by actions on Gi and/or the catalytic subunit and decreases PGE2 responsiveness by a mechanism involving the PGE2 receptor.


1995 ◽  
Vol 307 (1) ◽  
pp. 281-285 ◽  
Author(s):  
A Savage ◽  
L Zeng ◽  
M D Houslay

An immobilized hepatocyte preparation was used to show that both vasopressin and glucagon could desensitize the ability of glucagon to increase intracellular cyclic AMP concentrations. This process was not dependent on any influx of extracellular Ca2+ and was not mediated by any rise in the intracellular level of Ca2+. The protein kinase C-selective inhibitors chelerythrine, staurosporine and calphostin C acted as potent inhibitors of the desensitization process but with various degrees of selectivity regarding their ability to inhibit the desensitizing actions of glucagon and vasopressin. The protein phosphatase inhibitor okadaic acid was just as potent as vasopressin and glucagon in causing desensitization. Treatment of hepatocyte membranes with alkaline phosphatase restored to near control levels the ability of glucagon to stimulate adenylate cyclase activity in membranes from both glucagon- and vasopressin-treated (desensitized) hepatocytes. It is suggested that the desensitization of glucagon-stimulated adenylate cyclase activity involves a reversible phosphorylation reaction with the likely target being the glucagon receptor itself.


1988 ◽  
Vol 254 (1) ◽  
pp. C183-C191 ◽  
Author(s):  
B. S. Dixon ◽  
R. Breckon ◽  
C. Burke ◽  
R. J. Anderson

Activators of protein kinase C, a calcium- and phospholipid-dependent protein kinase, inhibit vasopressin-stimulated water flow in toad bladder. To determine the biochemical mechanisms of this inhibition, we examined the effects of activators of protein kinase C on arginine vasopressin (AVP)-stimulated adenylate cyclase activity in cultured rabbit cortical collecting tubular cells. The phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA), the diacylglycerol, 1-oleyl-2-acetyl glycerol (OAG), and the diacylglycerol kinase inhibitor, R59022, all rapidly activate protein kinase C in collecting tubular cells. Pretreatment with PMA produces a delayed inhibition (greater than or equal to 4 h) of AVP-stimulated adenylate cyclase activity. The 4-h time lag suggests that the effects of protein kinase C are mediated indirectly, possibly as a consequence of stimulating cell proliferation. PMA does not inhibit cholera toxin- or forskolin-stimulated adenylate cyclase activity, suggesting an effect on the vasopressin receptor or coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. Neither prostaglandins nor the inhibitory guanine nucleotide regulatory protein appear to mediate this effect. In contrast, treatment with either OAG or R59022 produces a rapid inhibition of both AVP- and forskolin-stimulated adenylate cyclase activity suggesting a prominent distal site of action, presumably at the catalytic subunit of adenylate cyclase. The results demonstrate that different activators of protein kinase C inhibit AVP-stimulated adenylate cyclase activity by distinctly different mechanisms possibly by altering the substrate specificity or activating multiple forms of the kinase. These results have important implications when using different activators to study the biological effects of protein kinase C.


1989 ◽  
Vol 262 (3) ◽  
pp. 829-834 ◽  
Author(s):  
L A Quilliam ◽  
P R M Dobson ◽  
B L Brown

The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.


1985 ◽  
Vol 63 (8) ◽  
pp. 983-986 ◽  
Author(s):  
Ponnal Nambi ◽  
David R. Sibley ◽  
Robert J. Lefkowitz

Preincubation of frog erythrocyte lysates with tumor-promoting phorbol diesters leads to an increase in adenylate cyclase activity. This stimulatory effect of phorbol diesters was specific. Incubation with 12-O-tctradecanoylphorbol 13-acetate led to increases in basal (38%) and isoproterenol- (40%), fluoride- (25%), and Mn-stimulated (68%) adenylate cyclase activities compared with control. The inactive phorbol diesters (4α-phorbol 12,13-didecanoate and β-phorbol) were ineffective in promoting increases in adenylate cyclase activity. The effect of active phorbol diesters was also observed on isolated frog erythrocyte membranes in the absence of cell supernatant, although to a much lesser extent than in the whole lysates. Addition of the cell supernatant or of purified protein kinase C to the membranes maximized the sensitization by the phorbol diesters. These data are consistent with the notion that some component(s) of the adenylate cyclase system is (are) phosphorylated by protein kinase C, resulting in an enhancement of enzyme activity.


1997 ◽  
Vol 272 (45) ◽  
pp. 28793-28799 ◽  
Author(s):  
Péter Ács ◽  
Qiming J. Wang ◽  
Krisztina Bögi ◽  
Adriana M. Marquez ◽  
Patricia S. Lorenzo ◽  
...  

1988 ◽  
Vol 255 (1) ◽  
pp. G27-G32 ◽  
Author(s):  
G. Warhurst ◽  
N. B. Higgs ◽  
M. Lees ◽  
A. Tonge ◽  
L. A. Turnberg

We examined the possibility that the protein kinase C pathway may interact with the adenosine 3',5'-cyclic monophosphate (cAMP) pathway in intestinal epithelium by studying the influence of phorbol esters on the response to prostaglandin E2 (PGE2) in a colonic epithelial cell line. Pretreatment of T84 cells with 4 beta-phorbol 12,13-dibutyrate (PDB) markedly attenuated the rise in short-circuit current provoked by PGE2, a receptor-mediated cAMP agonist. The EC50 of this effect was 52 nM PDB with a half time of 4-6 min. The responses to nonreceptor-mediated agonists, forskolin and dibutyryl cAMP, were unaffected by phorbol ester. PDB also reduced the ability of PGE2 to stimulate adenylate cyclase activity in these cells. The accumulation of cAMP in response to PGE2 was inhibited by PDB (EC50 38 nM), an effect mimicked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol. In addition, PGE2 stimulation of adenylate cyclase in membranes from PDB-treated cells was reduced by 30-40%. Inhibition was not mediated via the catalytic or regulatory subunit of the adenylate cyclase, implying an action involving desensitization of PGE2 receptors. These results provide evidence of a complex interrelationship between protein kinase C- and cAMP-mediated pathways that might be important in regulating the cellular response to secretagogues.


Sign in / Sign up

Export Citation Format

Share Document